Skip to main content

Advertisement

Log in

Research Progress on the Failure Mechanisms and Modifications of Ni-Rich Ternary Layered Oxide Cathode Materials for Lithium-Ion Batteries

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With the continuous increase in energy demand, lithium-ion batteries (LIBs) are extensively used in a variety of applications because of their high voltage, large specific capacity, and good cyclic performance. The cathode material is critical to determine the properties of LIBs. As one of the most commercialized cathode materials, Ni-rich ternary layered oxides encompass the triple advantages of Ni, Co, and Mn and are the preferred cathode materials for designing high-specific energy LIBs by increasing Ni content and reducing Co and Mn content to obtain higher specific capacity and lower cost. However, they also have some problems and challenges that must be overcome urgently to be more suitable for the future development of the LIB industry. In this paper, the main problems and failure mechanisms of Ni-rich ternary layered oxide cathode materials are reviewed in detail, including cation mixing, thermal stability, and microcracks. In view of the three major issues above, the advances in modification research in recent years are summarized, including doping, coating, doping and coating synergistic modification, and special structure design. Finally, the future developments and challenges are forecasted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from John Wiley and Sons.22

Fig. 4

Reproduced with permission from John Wiley and Sons.22

Fig. 5

Reproduced with permission from Elsevier.24

Fig. 6

Reproduced with permission from John Wiley and Sons.22

Fig. 7

Reproduced with permission from Elsevier.28

Fig. 8

Reprinted with permission from Ref. 30. Copyright (2017) American Chemical Society.

Fig. 9
Fig. 10

Reprinted with permission from Ref. 38. Copyright (2019) American Chemical Society.

Fig. 11

Reprinted with permission from Ref. 40. Copyright (2021) American Chemical Society.

Fig. 12

Reproduced with permission from Elsevier.48

Fig. 13

Reproduced with permission from John Wiley and Sons.58

Fig. 14

Reproduced with permission from Elsevier.72

Fig. 15

Reproduced with permission from Elsevier.79

Fig. 16

Reproduced with permission from Elsevier.83

Similar content being viewed by others

References

  1. M.-S. Balogun, W. Qiu, Y. Luo, H. Meng, W. Mai, A. Onasanya, T.K. Olaniyi, and Y. Tong, Nano Res. 9, 2823 (2016).

    Article  CAS  Google Scholar 

  2. F.-F. Cao, Y.-G. Guo, and L.-J. Wan, Energy Environ. Sci. 4, 1634 (2011).

    Article  CAS  Google Scholar 

  3. T. Ohzuku and R.J. Brodd, J. Power Sources 174, 449 (2007).

    Article  CAS  Google Scholar 

  4. T. Placke, R. Kloepsch, S. Duhnen, and M. Winter, J. Solid State Electrochem. 21, 1939 (2017).

    Article  CAS  Google Scholar 

  5. X. Liu, Y. Tan, W. Wang, C. Li, Z.W. Seh, L. Wang, and Y. Sun, Nano Lett. 20, 4558 (2020).

    Article  CAS  Google Scholar 

  6. X. Xiao, J. Lu, and Y. Li, Nano Res. 3, 733 (2010).

    Article  CAS  Google Scholar 

  7. C.-W. Hu, C.-H. Lee, and P.-J. Wu, J. Chin. Chem. Soc. 68, 507 (2021).

    Article  CAS  Google Scholar 

  8. Y. Kuai, F. Wang, J. Yang, Z. Xu, H. Li, X. Xu, Y. Nuli, and J. Wang, ACS Appl. Mater. Interfaces 13, 26971 (2021).

    Article  CAS  Google Scholar 

  9. R. Fantin, E. Trevisanello, R. Ruess, A. Pokle, G. Conforto, F.H. Richter, K. Volz, and J. Janek, Chem. Mater. 33, 2624 (2021).

    Article  CAS  Google Scholar 

  10. K. Nakamura, K. Ohno, K. Okamura, Y. Michihiro, I. Nakabayashi, and T. Kanashiro, Solid State Ion 135, 143 (2000).

    Article  CAS  Google Scholar 

  11. X. Xiao, L. Wang, D. Wang, X. He, Q. Peng, and Y. Li, Nano Res. 2, 923 (2009).

    Article  CAS  Google Scholar 

  12. K. Hoang and M.D. Johannes, J. Mater. Chem. A 2, 5224 (2014).

    Article  CAS  Google Scholar 

  13. A. Manthiram, A.V. Murugan, A. Sarkar, and T. Muraliganth, Energy Environ. Sci. 1, 621 (2008).

    Article  CAS  Google Scholar 

  14. Z. Chen, Z. Zhang, P. Liu, S. Wang, W. Zhang, and D. Chen, J. Alloys Compd. 780, 643 (2019).

    Article  CAS  Google Scholar 

  15. X.-H. Liu, L.-Q. Kou, T. Shi, K. Liu, and L. Chen, J. Power Sources 267, 874 (2014).

    Article  CAS  Google Scholar 

  16. S.H. Ju, I.-S. Kang, Y.-S. Lee, W.-K. Shin, S. Kim, K. Shin, and D.-W. Kim, ACS Appl. Mater. Interfaces 6, 2546 (2014).

    Article  CAS  Google Scholar 

  17. L. Cheng, B. Zhang, S.-L. Su, L. Ming, Y. Zhao, and X.-X. Tan, RSC Adv. 11, 124 (2021).

    Article  CAS  Google Scholar 

  18. S.S. Jan, S. Nurgul, X. Shi, H. Xia, and H. Pang, Electrochim. Acta 149, 86 (2014).

    Article  CAS  Google Scholar 

  19. B. Zhu, Z. Yu, L. Meng, Z. Xu, C. Lv, Y. Wang, G. Wei, and J. Qu, Ionics 27, 2749 (2021).

    Article  CAS  Google Scholar 

  20. H.-J. Noh, S. Youn, C.S. Yoon, and Y.-K. Sun, J. Power Sources 233, 121 (2013).

    Article  CAS  Google Scholar 

  21. H.H. Li, N. Yabuuchi, Y.S. Meng, S. Kumar, J. Breger, C.P. Grey, and Y. Shao-Horn, Chem. Mater. 19, 2551 (2007).

    Article  Google Scholar 

  22. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Angew. Chem. Int. Ed. 54, 4440 (2015).

    Article  CAS  Google Scholar 

  23. X. Lai, G. Hu, Z. Peng, H. Tong, Y. Lu, Y. Wang, X. Qi, Z. Xue, Y. Huang, K. Du, and Y. Cao, J. Power Sources 431, 144 (2019).

    Article  CAS  Google Scholar 

  24. F. Wu, N. Liu, L. Chen, Y.F. Su, G.Q. Tan, L.Y. Bao, Q.Y. Zhang, Y. Lu, J. Wang, S. Chen, and J. Tan, Nano Energy 59, 50 (2019).

    Article  CAS  Google Scholar 

  25. N.T. Wu, H. Wu, J.K. Kim, X.M. Liu, and Y. Zhang, ChemElectroChem 5, 78 (2018).

    Article  CAS  Google Scholar 

  26. P. Li, S. Zhao, Y. Zhuang, J. Adkins, Q. Zhou, and J. Zheng, Appl. Surf. Sci. 453, 93 (2018).

    Article  CAS  Google Scholar 

  27. Y. You, H. Celio, J. Li, A. Dolocan, and A. Manthiram, Angew. Chem. Int. Ed. 57, 6480 (2018).

    Article  CAS  Google Scholar 

  28. S. Xu, X. Wang, W. Zhang, K. Xu, X. Zhou, Y. Zhang, H. Wang, and J. Zhao, Solid State Ion 334, 105 (2019).

    Article  CAS  Google Scholar 

  29. S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, and K. Nakura, J. Power Sources 258, 210 (2014).

    Article  CAS  Google Scholar 

  30. H.-H. Sun and A. Manthiram, Chem. Mater. 29, 8486 (2017).

    Article  CAS  Google Scholar 

  31. D.-Y. Hwang, S.-J. Sim, B.-S. Jin, H.-S. Kim, and S.-H. Lee, ACS Appl. Energy Mater. 4, 1743 (2021).

    Article  CAS  Google Scholar 

  32. S. Oswald, D. Pritzl, M. Wetjen, and H.A. Gasteiger, J. Electrochem. Soc. 167, 100511 (2020).

    Article  CAS  Google Scholar 

  33. J. Li, L.E. Downie, L. Ma, W. Qiu, and J.R. Dahn, J. Electrochem. Soc. 162, A1401 (2015).

    Article  CAS  Google Scholar 

  34. X. Li, W.-J. Ge, H. Wang, and M.-Z. Qu, J. Inorg. Mater. 32, 113 (2017).

    Article  Google Scholar 

  35. A.O. Kondrakov, H. Gesswein, K. Galdina, L. de Biasi, V. Meded, E.O. Filatova, G. Schumacher, W. Wenzel, P. Hartmann, T. Brezesinski, and J. Janek, J. Phys. Chem. C 121, 24381 (2017).

    Article  CAS  Google Scholar 

  36. L.W. Feng, Y. Liu, L. Wu, W.C. Qin, and Z.H. Yang, Powder Technol. 388, 166 (2021).

    Article  CAS  Google Scholar 

  37. B. Huang, X. Li, Z. Wang, H. Guo, and X. Xiong, Ceram. Int. 40, 13223 (2014).

    Article  CAS  Google Scholar 

  38. X. Yang, Y. Tang, G. Shang, J. Wu, Y. Lai, J. Li, Y. Qu, and Z. Zhang, ACS Appl. Mater. Interfaces 11, 32015 (2019).

    Article  CAS  Google Scholar 

  39. Y. Cheng, Y. Sun, C. Chu, L. Chang, Z. Wang, D. Zhang, W. Liu, Z. Zhuang, and L. Wang, Nano Res. 15, 4091 (2022).

    Article  CAS  Google Scholar 

  40. B. Chu, L. You, G. Li, T. Huang, and A. Yu, ACS Appl. Mater. Interfaces 13, 7308 (2021).

    Article  CAS  Google Scholar 

  41. C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, and C. Delmas, J. Electrochem. Soc. 147, 2061 (2000).

    Article  CAS  Google Scholar 

  42. H. Xie, K. Du, G. Hu, Z. Peng, and Y. Cao, J. Phys. Chem. C 120, 3235 (2016).

    Article  CAS  Google Scholar 

  43. G.-T. Park, H.-H. Ryu, N.-Y. Park, C.S. Yoon, and Y.-K. Sun, J. Power Sources 442, 227242 (2019).

    Article  CAS  Google Scholar 

  44. U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghazchi, D. Aurbach, D.T. Major, G. Goobes, M. Dixit, N. Leifer, C.M. Wang, P. Yan, D. Ahn, K.H. Kim, C.S. Yoon, and Y.K. Sun, Energy Environ. Sci. 11, 1271 (2018).

    Article  CAS  Google Scholar 

  45. Y. Su, Y. Yang, L. Chen, Y. Lu, L. Bao, G. Chen, Z. Yang, Q. Zhang, J. Wang, R. Chen, S. Chen, and F. Wu, Electrochim. Acta 292, 217 (2018).

    Article  CAS  Google Scholar 

  46. W.-K. Kim, D.-W. Han, W.-H. Ryu, S.-J. Lim, J.-Y. Eom, and H.-S. Kwon, J. Alloys Compd. 592, 48 (2014).

    Article  CAS  Google Scholar 

  47. Y.-K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, and J. Prakash, J. Power Sources 161, 19 (2006).

    Article  CAS  Google Scholar 

  48. P. Zhang, Z. Liu, B. Ma, P. Li, Y. Zhou, and X. Tian, Ceram. Int. 47, 33843 (2021).

    Article  CAS  Google Scholar 

  49. W. Xiang, C.-Q. Zhu, J. Zhang, H. Shi, Y.-T. Liang, M.-H. Yu, X.-M. Zhu, F.-R. He, G.-P. Lv, and X.-D. Guo, J. Alloys Compd. 786, 56 (2019).

    Article  CAS  Google Scholar 

  50. W. Yao, Y. Liu, D. Li, Q. Zhang, S. Zhong, H. Cheng, and Z. Yan, J. Phys. Chem. C 124, 2346 (2020).

    Article  CAS  Google Scholar 

  51. J. Wang, Y. Nie, C. Miao, Y. Tan, M. Wen, and W. Xiao, J. Colloid Interface Sci. 601, 853 (2021).

    Article  CAS  Google Scholar 

  52. H. Liu, R. Yang, W. Yang, C. Bai, Y.-C. Li, G. Wang, Y. Liu, W. Xiang, Z. Wu, and X. Guo, J. Mater. Sci. 56, 2347 (2021).

    Article  CAS  Google Scholar 

  53. B. Zhang, L. Li, and J. Zheng, J. Alloys Compd. 520, 190 (2012).

    Article  CAS  Google Scholar 

  54. M. Shang, E. Han, Y. Tian, Y. He, L. Sun, and L. Zhu, Ionics 26, 2699 (2020).

    Article  CAS  Google Scholar 

  55. R.S. Negi, S.P. Culver, M. Wiche, S. Ahmed, K. Volz, and M.T. Elm, PCCP 23, 6725 (2021).

    Article  CAS  Google Scholar 

  56. Y. Chen, M. Wang, J. Chen, J. Yang, Z. Li, Y. Huang, Z. Chen, Y. Zou, J. Zheng, and X. Li, Mater. Lett. 271, 105561 (2020).

    Google Scholar 

  57. C. Chen, T. Tao, W. Qi, H. Zeng, Y. Wu, B. Liang, Y. Yao, S. Lu, and Y. Chen, J. Alloys Compd. 709, 708 (2017).

    Article  CAS  Google Scholar 

  58. H. Kim, J. Jang, D. Byun, H.-S. Kim, and W. Choi, Chemsuschem 12, 5253 (2019).

    Article  CAS  Google Scholar 

  59. F. Lv, H. Cheng, W. Nie, Q. Sun, Y. Liu, T. Duan, Q. Xu, and X. Lu, ChemistrySelect 6, 6339 (2021).

    Article  CAS  Google Scholar 

  60. K. Yang, L.-Z. Fan, J. Guo, and X. Qu, Electrochim. Acta 63, 363 (2012).

    Article  CAS  Google Scholar 

  61. S. Dai, G. Yan, L. Wang, L. Luo, Y. Li, Y. Yang, H. Liu, Y. Liu, and M. Yuan, J. Electroanal. Chem. 847, 113197 (2019).

    Article  CAS  Google Scholar 

  62. W. Li, L. Yang, Y. Li, Y. Chen, J. Guo, J. Zhu, H. Pan, and X. Xi, Front. Chem. 8, 597 (2020).

    Article  CAS  Google Scholar 

  63. R. Diao, G.P. Nayaka, C. Zhu, X. Yu, Y. Zhang, J. Rong, X. Wang, Y. Zhang, P. Dong, M. Zhang, X. Yang, and Z. Zhan, Int. J. Electrochem. Sci. 14, 8070 (2019).

    Article  CAS  Google Scholar 

  64. X. Liu, D. Li, H. Li, A. Iyo, N. Hanada, M. Ishida, and H. Zhou, Electrochim. Acta 148, 26 (2014).

    Article  CAS  Google Scholar 

  65. Y. Kim and J. Cho, J. Electrochem. Soc. 154, A495 (2007).

    Article  CAS  Google Scholar 

  66. X.H. Xiong, D. Ding, Z.X. Wang, B. Huang, H.J. Guo, and X.H. Li, J. Solid State Electrochem. 18, 2619 (2014).

    Article  CAS  Google Scholar 

  67. B. Zhang, P. Dong, H. Tong, Y. Yao, J. Zheng, W. Yu, J. Zhang, and D. Chu, J. Alloys Compd. 706, 198 (2017).

    Article  CAS  Google Scholar 

  68. K. Meng, Z. Wang, H. Guo, X. Li, and D. Wang, Electrochim. Acta 211, 822 (2016).

    Article  CAS  Google Scholar 

  69. S. Liu, H. Wu, L. Huang, M. Xiang, H. Liu, and Y. Zhang, J. Alloys Compd. 674, 447 (2016).

    Article  CAS  Google Scholar 

  70. X.Q. Song, M.Y. Jia, and R.F. Chen, J. Mater. Process. Technol. 120, 21 (2002).

    Article  CAS  Google Scholar 

  71. C.H. Jo, D.H. Cho, H.J. Noh, H. Yashiro, Y.K. Sun, and S.T. Myung, Nano Res. 8, 1464 (2015).

    Article  CAS  Google Scholar 

  72. W. Tang, Z. Chen, F. Xiong, F. Chen, C. Huang, Q. Gao, T. Wang, Z. Yang, and W. Zhang, J. Power Sources 412, 246 (2019).

    Article  CAS  Google Scholar 

  73. S. Peng, X. Kong, J. Li, J. Zeng, and J. Zhao, ACS Sustain. Chem. Eng. 9, 7466 (2021).

    Article  CAS  Google Scholar 

  74. M.A.R. Khollari, M.K. Azar, M. Esmaeili, M. Tanhaei, A. Dolati, and S.M.H. Hosseini, J. Alloys Compd. 843, 154924 (2020).

    Article  Google Scholar 

  75. Q. Ran, H. Zhao, Y. Hu, Q. Shen, W. Liu, J. Liu, X. Shu, M. Zhang, S. Liu, M. Tan, H. Li, and X. Liu, Electrochim. Acta 289, 82 (2018).

    Article  CAS  Google Scholar 

  76. X. Liu, Q. Chen, Y. Li, C. Chen, W. Zeng, M. Yuan, R. Wang, and S. Xiao, J. Electrochem. Soc. 166, A3480 (2019).

    Article  CAS  Google Scholar 

  77. F. Zhang, K. Wu, L. Zhang, X. Hu, K. Yu, C. Liang, and W. Jin, Ionics 27, 2367 (2021).

    Article  CAS  Google Scholar 

  78. L. Wang, J.S. Liang, X.Y. Zhang, S.Z. Li, T.Y. Wang, F. Ma, J.T. Han, Y.H. Huang, and Q. Li, Nanoscale 13, 4670 (2021).

    Article  CAS  Google Scholar 

  79. M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, and X. Liu, J. Alloys Compd. 774, 82 (2019).

    Article  CAS  Google Scholar 

  80. M. Tang, J. Yang, N. Chen, S. Zhu, X. Wang, T. Wang, C. Zhang, and Y. Xia, J. Mater. Chem. A 7, 6080 (2019).

    Article  CAS  Google Scholar 

  81. X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, and J. Zheng, Sustainable. Energy Fuels 2, 413 (2018).

    CAS  Google Scholar 

  82. Y.K. Sun, S.T. Myung, M.H. Kim, J. Prakash, and K. Amine, J. Am. Chem. Soc. 127, 13411 (2005).

    Article  CAS  Google Scholar 

  83. L. Liang, G. Hu, Y. Cao, K. Du, and Z. Peng, J. Alloys Compd. 635, 92 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51562006) and the Guangxi Distinguished Experts Special Fund (No. 2019B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Zou.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, X., Geng, J. et al. Research Progress on the Failure Mechanisms and Modifications of Ni-Rich Ternary Layered Oxide Cathode Materials for Lithium-Ion Batteries. J. Electron. Mater. 52, 72–95 (2023). https://doi.org/10.1007/s11664-022-09978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09978-w

Keywords

Navigation