Skip to main content

Advertisement

Log in

Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Ni-rich cathodes are considered as the next generation candidate cathode material of lithium-ion batteries due to the high-energy–density and environmentally friendly. Unfortunately, the cathodes are up against severe structure instability at the repeated charge/discharge process, resulting in the attenuation of voltage and capacity. Herein, we proposed a novel strategy with uniform Al and Ti cations co-doping of LiNi0.8Co0.1Mn0.1O2 cathode. The modification strategy not only stabilizes the vulnerable layered structure but also mitigate voltage/capacity attenuation at different cutoff voltages. As a result, the modified cathode with trace content of Al and Ti cations co-doping can broaden the lithium ions diffusion channels, mitigate the structural collapse, and unfavorable phase transformation to some extent. Specifically, the modified sample exhibits remarkable enhanced electrochemical performance in discharge capacity and voltage retention of 76.75%, 98.78% at 1 C after 200 cycles. Even though at elevated voltage, the modified sample shows improved cycle life with a capacity retention of 70.93% after 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7

Similar content being viewed by others

References

  1. Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8:1702397

    Article  Google Scholar 

  2. Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6:1600906

    Article  Google Scholar 

  3. Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R (2019) Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv Energy Mater 9:1900551

    Article  Google Scholar 

  4. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3−LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280

    Article  CAS  Google Scholar 

  5. Croy JR, Gutierrez A, He M, Yonemoto BT, Lee E, Thackeray MM (2019) Development of manganese-rich cathodes as alternatives to nickel-rich chemistries. J Power Sources 434:226706

    Article  CAS  Google Scholar 

  6. Pei Y, Chen Q, Xiao Y-C, Liu L, Xu C-Y, Zhen L, Henkelman G, Cao G (2017) Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites. Nano Energy 40:566–575

    Article  CAS  Google Scholar 

  7. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284

    Article  Google Scholar 

  8. S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang (2020) Reviving reaction mechanism of layered lithium-rich cathode materials for high-energy lithium-ion battery. Angew Chem Int Edn (2020).

  9. Wang X, Ding YL, Deng YP, Chen Z (2020) Ni-Rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv Energy Mater 10:1903864

    Article  CAS  Google Scholar 

  10. Xu C-L, Xiang W, Wu Z-G, Xu Y-D, Li Y-C, Chen M-Z, Guo X, Lv G-P, Zhang J, Zhong B-H (2018) Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode. ACS Appl Mater Interfaces 10:27821–27830.

    Article  CAS  Google Scholar 

  11. Yong-Chun Li WX, Yao Xiao, Zhen-Guo Wu, Chun-Liu Xu, Wei Xu, Ya-Di Xu,Chen Wu, Zu-Guang Yang, Xiao-Dong Guo (2019) Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. J Power Sources 423:144–151.

  12. Yong Ming WX, Lang Qiu, Weibo Hua, Rong Li, Zhen-Guo Wu, Chunliu Xu, Yongchun Li, Dong Wang, Yanxiao Chen, Benhe Zhong, Fengrong He, Xiaodong Guo (2019) Dual elements coupling effect induced modification from surface into bulk lattice for Ni-rich cathode with suppressed capacity and voltage decay. ACS Appl Mater Interfaces 12:8146–8156.

  13. Xu C, Xiang W, Wu Z, Xu Y, Li Y, Wang Y, Xiao Y, Guo X, Zhong B (2019) Highly stabilized Ni-Rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high-performance Lithium-ion batteries. ACS Appl Mater Interfaces 11:16629–16638

    Article  CAS  Google Scholar 

  14. Qiu L, Xiang W, Tian W, Xu C-L, Li Y-C, Wu Z-G, Chen T-R, Jia K, Wang D, He F-R, Guo X-D (2019) Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy 63:103818

    Article  CAS  Google Scholar 

  15. Yong-Chun Li WX, Zhen-Guo Wu, Chun-Liu Xu, Ya-Di Xu, Yao Xiao, ZuGuang Yang, Chun-Jin Wu, Gen-Pin Lv, Xiao-Dong Guo (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochimica Acta 291:84–94.

  16. Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80.

    Article  CAS  Google Scholar 

  17. Yang X, Tang Y, Shang G, Wu J, Lai Y, Li J, Qu Y, Zhang Z (2019) Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl Mater Interfaces 11:32015–32024.

    Article  CAS  Google Scholar 

  18. Wu F, Li Q, L. Chen L, Zhang Q, Wang Z, Lu Y, Bao L, Chen S, Su Y (2019) Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping. ACS Appl Mater Interfaces 11:36751–32024.

    Article  CAS  Google Scholar 

  19. Liu Y, He B, Li Q, Liu H, Qiu L, Liu J, Xiang W, Liu Y, Wang G, Wu Z, Guo X (2020) Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13Mn0.54O2 by Mg2+ and PO43- dual doping. Mater Res Bull 130:110923.

    Article  CAS  Google Scholar 

  20. Piao JY, Duan SY, Lin XJ, Tao XS, Xu YS, Cao AM, Wan LJ (2018) Surface Zn doped LiMn2O4 for an improved high temperature performance. Chem Commun 54:5326–5329

    Article  CAS  Google Scholar 

  21. Han B, Xu S, Zhao S, Lin G, Feng Y, Chen L, Ivey DG, Wang P, Wei W (2018) Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl Mater Interfaces 10:39599–39607

    Article  CAS  Google Scholar 

  22. Liu H, He B, Xiang W, Li YC, Bai C, Liu YP, Zhou W, Chen X, Liu Y, Gao S, Guo X (2020) Synergistic effect of uniform lattice cation/anion doping improved structural and electrochemical performance stability for Li-rich cathode materials. Nanotechnology 31:455704

    Article  CAS  Google Scholar 

  23. Mo Y, Guo L, Jin H, Du B, Cao B, Chen Y, Li D, Chen Y (2019) Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries. J Power Sources 448:227439.

    Article  Google Scholar 

  24. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major DT, Aurbach D (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of Nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682

    Article  Google Scholar 

  25. Chong S, Chen Y, Yan W, Guo S, Tan Q, Wu Y, Jiang T, Liu Y (2016) Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources 332:230–239

    Article  CAS  Google Scholar 

  26. Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 331:91–99.

    Article  CAS  Google Scholar 

  27. Liu Y, Lin X-J, Sun Y-G, Xu Y-S, Chang B-B, Liu C-T, Cao A-M, Wan L-J (2019) Precise surface engineering of cathode materials for improved stability of Lithium-ion batteries. Small 15:1901019

    Article  Google Scholar 

  28. Sun H-H, Ryu H-H, Kim U-H, Weeks JA, Heller A, Sun Y-K, Mullins CB (2020) Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett 5:1136–1146

    Article  CAS  Google Scholar 

  29. Wen Liu PO, Xien Liu, Min-Joon Lee, Woongrae Cho, Sujong Chae,Youngsik Kim, Jaephil Cho (2014) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem-Int Edition 54:4440–4457.

  30. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11:1550

    Article  CAS  Google Scholar 

  31. Liang Y, Li S, Xie J, Yang L, Li W, Li C, Ai L, Fu X, Cui X, Shangguan X (2019) Synthesis and electrochemical characterization of Mg-Al co-doped Li-rich Mn-based cathode materials. New J Chem 43:12004–12012

    Article  CAS  Google Scholar 

  32. Zhang J-N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X-Q, Huang X, Chen L, Li H (2019) Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy 4 :594–603.

    Article  Google Scholar 

  33. Weibo Hua MC, Björn Schwarz, Michael Knapp, Michael Bruns, Juri Barthel, Xiushan Yang, Florian Sigel, Raheleh Azmi, Anatoliy Senyshyn, Alkesandr Missiul, Laura Simonelli, Martin Etter, Suning Wang, Xiaoke Mu, Andy Fiedler, Joachim R. Binder, Xiaodong Guo, Shulei Chou, Benhe Zhong, Sylvio Indris, Helmut Ehrenberg (2019) Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 Oxides. Adv Energy Mater 9:1803094.

  34. Wen Yang WX, Yanxiao Chen, Zhen-Guo Wu, Weibo Hua, Lang Qiu, Fengrong He, Jun Zhang, Benhe Zhong, Xiaodong Guo (2019) Interfacial regulation of Ni-rich cathode materials with ion conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces 12:10240–10251.

  35. Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK (2006) High capacity LiLi0.2Ni0.2Mn0.6O2 cathode materials via a carbonate co-precipitation method. J Power Sources 162:1346–1350.

    Article  Google Scholar 

  36. Shi J-L, Xiao D-D, Ge M, Yu X, Chu Y, Huang X, Zhang X-D, Yin Y-X, Yang X-Q, Guo Y-G, Gu L, Wan L-J (2018) High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 30:1705575

    Article  Google Scholar 

  37. Zhang S, Ma J, Hu Z, Cui G, Chen L (2019) Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem Mater 31:6033–6065

    Article  CAS  Google Scholar 

  38. Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo Z, Cho J (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater 7:1601507

    Article  Google Scholar 

  39. Wang L, Ma J, Wang C, Yu X, Liu R, Jiang F, Sun X, Du A, Zhou X, Cui G (2019) A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv Sci 6:1900355.

    Article  Google Scholar 

  40. Ya-Di Xu JZ, Zhen-Guo Wu, Chun-Liu Xu, Yong-Chun Li, Wei Xiang, Yuan Wang, Yan-Jun Zhong, Xiao-Dong Guo, Hong Chen (2019) Stabilizing the structure of Nickel-rich lithiated oxides via Cr doping as cathode with boosted high-voltage/temperature cycling performance for Li-ion battery. Energy Technol 8:1900498.

  41. Li R, Ming Y, Xiang W, Xu C, Feng G, Li Y, Chen Y, Wu Z, Zhong B, Guo X (2019) Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteries. RSC Adv 9:36849–36857.

    Article  CAS  Google Scholar 

  42. Hoon-Hee Ryu K-JP, Dae Ro Yoon, Assylzat Aishova, Chong S. Yoon, Yang-Kook Sun (2019) Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability. Adv Energy Mater 9:1902698.

  43. Yang H, Wu H-H, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee W-K, Zhang Q, Lu J (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Func Mater 29:1808825

    Article  Google Scholar 

  44. Cho Y, Lee S, Lee Y, Hong T, Cho J (2011) Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater 1:821–828

    Article  CAS  Google Scholar 

  45. Pei Y, Xu C-Y, Xiao Y-C, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G (2017) Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Func Mater 27:1604349

    Article  Google Scholar 

  46. Guowen Song HZ, Zhen Wang, Yanyang Dai, Xiang-yang Zhou, and Juan Yang (2019) Interfacial film Li1.3Al0.3Ti1.7PO4 coated LiNi0.6Co0.2Mn0.2O2 for long cycle stability of lithium-ion batteries. ACS Appl Energy Mater 2:7923–7932.

  47. Cao Y, Qi X, Hu K, Wang Y, Gan Z, Li Y, Hu G, Peng Z, Du K (2018) Conductive polymers encapsulation to enhance electrochemical performance of Ni-Rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10:18270–18280

    Article  CAS  Google Scholar 

  48. Ran Q, Zhao H, Shu X, Hu Y, Hao S, Shen Q, Liu W, Liu J, Zhang M, Li H, Liu X (2019) Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating. ACS Appl Energy Mater 2:3120–3130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the project from the National Natural Science Foundation of China (21878195, 21805198), the Distinguished Young Foundation of Sichuan Province (20JCQN0197), and 2019 Strategic cooperation project between Sichuan University and Luzhou Municipal People's Government (No. 2019CDLZ-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, R., Yang, W. et al. Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries. J Mater Sci 56, 2347–2359 (2021). https://doi.org/10.1007/s10853-020-05246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05246-6

Navigation