Skip to main content
Log in

A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-ion batteries have emerged as the best portable energy storage device for the consumer electronics market. Recent progress in the development of lithiumion batteries has been achieved by the use of selected anode materials, which have driven improvements in performance in terms of capacity, cyclic stability, and rate capability. In this regard, research focusing on the design and electrochemical performance of full cell lithium-ion batteries, utilizing newly developed anode materials, has been widely reported, and great strides in development have been made. Nanostructured anode materials have contributed largely to the development of full cell lithium-ion batteries. With this in mind, we summarize the impact of nanostructured anode materials in the performance of coin cell full lithium-ion batteries. This review also discusses the challenges and prospects of research into full cell lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

    Article  Google Scholar 

  2. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  3. Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.

    Article  Google Scholar 

  4. Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312.

    Article  Google Scholar 

  5. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  6. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  7. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  8. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  Google Scholar 

  9. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  Google Scholar 

  10. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  11. Wang, Z.-L.; Xu, D.; Wang, H.-G.; Wu, Z.; Zhang, X.-B. In situ fabrication of porous graphene electrodes for highperformance energy storage. ACS Nano 2013, 7, 2422–2430.

    Article  Google Scholar 

  12. Huang, X.-L.; Chai, J.; Jiang, T.; Wei, Y.-J.; Chen, G.; Liu, W.-Q.; Han, D. X.; Niu, L.; Wang, L. M.; Zhang, X.-B. Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. J. Mater. Chem. 2012, 22, 3404–3410.

    Article  Google Scholar 

  13. Huang, X.-L.; Zhao, X.; Wang, Z.-L.; Wang, L.-M.; Zhang, X.-B. Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 3764–3769.

    Article  Google Scholar 

  14. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.

    Article  Google Scholar 

  15. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  16. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  Google Scholar 

  17. Balogun, M.-S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as highperformance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364–1387.

    Article  Google Scholar 

  18. Huang, Y. C.; Long, B.; Tang, M. N.; Rui, Z. B.; Balogun, M.-S.; Tong, Y. X.; Ji, H. B. Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B-Environ. 2016, 181, 779–787.

    Article  Google Scholar 

  19. Jayaraman, S.; Aravindan, V.; Ulaganathan, M.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Ultralong durability of porous a-Fe2O3 nanofibers in practical Li-ion configuration with LiMn2O4 cathode. Adv. Sci. 2015, 2, DOI: 10.1002/ advs.201500050.

    Google Scholar 

  20. Fan, X. L.; Shao, J.; Xiao, X. Z.; Chen, L. X.; Wang, X. H.; Li, S. Q.; Ge, H. W. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641–14648.

    Article  Google Scholar 

  21. Huang, Y.; Huang, X.-L.; Lian, J.-S.; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.

    Article  Google Scholar 

  22. Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

    Article  Google Scholar 

  23. Wang, H. G.; Ma, D. L.; Huang, X. L.; Huang, Y.; Zhang, X. B. General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.

    Google Scholar 

  24. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

    Article  Google Scholar 

  25. Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206–1215.

    Article  Google Scholar 

  26. Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484.

    Article  Google Scholar 

  27. Dai, K.; Lu, L. H.; Liang, C. H.; Dai, J. M.; Liu, Q. Z.; Zhang, Y. X.; Zhu, G. P.; Liu, Z. L. In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance. Electrochim. Acta 2014, 116, 111–117.

    Article  Google Scholar 

  28. Zhang, W. X.; Ma, G.; Gu, H. Y.; Yang, Z. H.; Cheng, H. A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode. J. Power Sources 2015, 273, 561–565.

    Article  Google Scholar 

  29. Aravindan, V.; Lee, Y.-S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

    Article  Google Scholar 

  30. Ulaganathan, M.; Aravindan, V.; Yan, Q. Y.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T. M. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 2016, 3, DOI: 10.1002/admi.201500309.

    Google Scholar 

  31. Zhang, P. F.; Zhao, L. Z.; An, Q. Y.; Wei, Q. L.; Zhou, L.; Wei, X. J.; Sheng, J. Z.; Mai, L. Q. A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 2016, 12, 1082–1090.

    Article  Google Scholar 

  32. Gwon, H.; Hong, J.; Kim, H.; Seo, D.-H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 2014, 7, 538–551.

    Article  Google Scholar 

  33. Zhou, G. M.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    Article  Google Scholar 

  34. Hu, Y. H.; Sun, X. L. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2014, 2, 10712–10738.

    Article  Google Scholar 

  35. Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.

    Article  Google Scholar 

  36. Li, W. W.; Gan, L.; Guo, K.; Ke, L. B.; Wei, Y. Q.; Li, H. Q.; Shen, G. Z.; Zhai, T. Y. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 2016, 8, 8666–8672.

    Article  Google Scholar 

  37. Balogun, M.-S.; Zhu, Y. K.; Qiu, W. T.; Luo, Y.; Huang, Y. C.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 25991–26003.

    Article  Google Scholar 

  38. Balogun, M.-S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946–953.

    Article  Google Scholar 

  39. Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCO2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

    Article  Google Scholar 

  40. Fang, X.; Shen, C. F.; Ge, M. Y.; Rong, J. P.; Liu, Y. H.; Zhang, A. Y.; Wei, F.; Zhou, C. W. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy 2015, 12, 43–51.

    Article  Google Scholar 

  41. Zhu, J.; Chen, L. B.; Xu, Z.; Lu, B. G. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339–346.

    Article  Google Scholar 

  42. Balogun, M.-S.; Wu, Z. P.; Luo, Y.; Qiu, W. T.; Fan, X. L.; Long, B.; Huang, M.; Liu, P.; Tong, Y. X. High power density nitridated hematite (a-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 2016, 308, 7–17.

    Article  Google Scholar 

  43. Qiu, W. T.; Balogun, M.-S.; Luo, Y.; Chen, K. Q.; Zhu, Y. K.; Xiao, X. J.; Lu, X. H.; Liu, P.; Tong, Y. X. Threedimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim. Acta 2016, 193, 32–38.

    Article  Google Scholar 

  44. Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

    Article  Google Scholar 

  45. Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

    Article  Google Scholar 

  46. Han, J.-T.; Goodenough, J. B. 3-V full cell performance of anode framework TiNb2O7/spinel LiNi0.5Mn1.5O4. Chem. Mater. 2011, 23, 3404–3407.

    Article  Google Scholar 

  47. Kumar Sen, U.; Shaligram, A.; Mitra, S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl. Mater. Interfaces 2014, 6, 14311–14319.

    Article  Google Scholar 

  48. Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Fu, F.; Sun, H.; Huang, L.; Yang, S. H.; Sun, S.-G. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4 i d lithium ion battery. ACS Appl. Mater. Interfaces 2013, 5, 6316–6323.

    Article  Google Scholar 

  49. Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945–2953.

    Article  Google Scholar 

  50. Cheah, Y. L.; Aravindan, V.; Madhavi, S. Synthesis and enhanced lithium storage properties of electrospun V2O5 nanofibers in full-cell assembly with a spinel Li4Ti5O12 anode. ACS Appl. Mater. Interfaces 2013, 5, 3475–3480.

    Article  Google Scholar 

  51. Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.

    Article  Google Scholar 

  52. Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266–A1274.

    Article  Google Scholar 

  53. Andersson, A. S.; Thomas, J. O. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 2001, 97–98, 498–502.

    Article  Google Scholar 

  54. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  55. Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800.

    Article  Google Scholar 

  56. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  57. Simões, M.; Surace, Y.; Yoon, S.; Battaglia, C.; Pokrant, S.; Weidenkaff, A. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries. J. Power Sources 2015, 291, 66–74.

    Article  Google Scholar 

  58. Chen, J. S.; Lou, X. W. D. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.

    Article  Google Scholar 

  59. Li, G.-R.; Xu, H.; Lu, X.-F.; Feng, J.-X.; Tong, Y.-X.; Su, C.-Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 2013, 5, 4056–4069.

    Article  Google Scholar 

  60. Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.

    Article  Google Scholar 

  61. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.

    Article  Google Scholar 

  62. Palacín, M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.

    Article  Google Scholar 

  63. Guo, J. L.; Liu, J. P. Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014, 4, 12950–12957.

    Article  Google Scholar 

  64. Zeng, Y. X.; Han, Y.; Zhao, Y. T.; Zeng, Y.; Yu, M. H.; Liu, Y. J.; Tang, H. L.; Tong, Y. X.; Lu, X. H. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1402176.

    Article  Google Scholar 

  65. Balogun, M.-S.; Yu, M. H.; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829.

    Article  Google Scholar 

  66. Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. a-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850.

    Google Scholar 

  67. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  68. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  69. Yu, M. H.; Qiu, W. T.; Wang, F. X.; Zhai, T.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 2015, 3, 15792–15823.

    Article  Google Scholar 

  70. Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.

    Article  Google Scholar 

  71. Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.

    Article  Google Scholar 

  72. Duan, W. C.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 2013, 5, 6485–6490.

    Article  Google Scholar 

  73. Balogun, M.-S.; Qiu, W. T.; Jian, J. H.; Huang, Y. C.; Luo, Y.; Yang, H.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23205–23215.

    Article  Google Scholar 

  74. Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.

    Article  Google Scholar 

  75. Kim, T.-H.; Park, J.-S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H.-K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.

    Article  Google Scholar 

  76. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  77. Luo, Y.; Balogun, M.-S.; Qiu, W. T.; Zhao, R. R.; Liu, P.; Tong, Y. X. Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4-S core–shell nanorods for lithium storage. Chem. Commun. 2015, 51, 13016–13019.

    Article  Google Scholar 

  78. Balogun, M.-S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348–355.

    Article  Google Scholar 

  79. Balogun, M.-S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844–9849.

    Article  Google Scholar 

  80. Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem—Eur. J. 2015, 21, 4359–4367.

    Article  Google Scholar 

  81. Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

    Article  Google Scholar 

  82. Plichta, E. J.; Behl, W. K. The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte. J. Electrochem. Soc. 1993, 140, 46–49.

    Article  Google Scholar 

  83. Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.

    Article  Google Scholar 

  84. Wang, Y.; Lee, J. Y. One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ Nano Res. for reversible Li+ ion storage. Angew. Chem., Int. Ed. 2006, 45, 7039–7042.

    Article  Google Scholar 

  85. Wang, Y.; Wu, M. H.; Jiao, Z.; Lee, J. Y. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 2009, 21, 3210–3215.

    Article  Google Scholar 

  86. Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries. Adv. Mater., in press, DOI: 10.1002/adma.201503978.

  87. Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.

    Article  Google Scholar 

  88. Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228–236.

    Article  Google Scholar 

  89. Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

    Article  Google Scholar 

  90. Yang, L. J.; Cheng, X. Q.; Gao, Y. Z.; Zuo, P. J.; Ma, Y. L.; Du, C. Y.; Shen, B.; Cui, Y. Z.; Guan, T.; Yin, G. P. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. ACS Appl. Mater. Interfaces 2014, 6, 12962–12970.

    Article  Google Scholar 

  91. Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312–4316.

    Article  Google Scholar 

  92. Sun, H.; He, X. M.; Li, J. J.; Ren, J. G.; Jiang, C. Y.; Wan, C. R. Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries. Solid State Ionics 2006, 177, 1331–1334.

    Article  Google Scholar 

  93. Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141–149.

    Article  Google Scholar 

  94. McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81–82, 20–26.

    Article  Google Scholar 

  95. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.

    Article  Google Scholar 

  96. Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim. Acta 1993, 38, 1179–1191.

    Article  Google Scholar 

  97. Menachem, C.; Peled, E.; Burstein, L.; Rosenberg, Y. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources 1997, 68, 277–282.

    Article  Google Scholar 

  98. Qian, G. N.; Wang, L.; Shang, Y. M.; He, X. M.; Tang, S. F.; Liu, M.; Li, T. W.; Zhang, G. Q.; Wang, J. L. Polyimide binder: A facile way to improve safety of lithium ion batteries. Electrochim. Acta 2016, 187, 113–118.

    Article  Google Scholar 

  99. Hwang, G.; Kim, J.-M.; Hong, D.; Kim, C.-K.; Choi, N.-S.; Lee, S.-Y.; Park, S. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chem. 2016, 18, 2710–2716.

    Article  Google Scholar 

  100. Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180–185.

    Article  Google Scholar 

  101. Khomenko, V. G.; Barsukov, V. Z.; Doninger, J. E.; Barsukov, I. V. Lithium-ion batteries based on carbon–silicon–graphite composite anodes. J. Power Sources 2007, 165, 598–608.

    Article  Google Scholar 

  102. Shim, J.; Striebel, K. A. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J. Power Sources 2003, 119–121, 955–958.

    Article  Google Scholar 

  103. Rana, K.; Kim, S. D.; Ahn, J.-H. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale 2015, 7, 7065–7071.

    Article  Google Scholar 

  104. Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189–3194.

    Article  Google Scholar 

  105. Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.

    Article  Google Scholar 

  106. Vargas, Ó.; Caballero, Á.; Morales, J. Deficiencies of chemically reduced graphene as electrode in full Li-ion cells. Electrochim. Acta 2015, 165, 365–371.

    Article  Google Scholar 

  107. Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

    Article  Google Scholar 

  108. Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 3290–3298.

    Article  Google Scholar 

  109. Vargas, Ó.; Caballero, Á.; Morales, J.; Elia, G. A.; Scrosati, B.; Hassoun, J. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 2013, 15, 20444–20446.

    Article  Google Scholar 

  110. Khomenko, V. G.; Barsukov, V. Z. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries. Electrochim. Acta 2007, 52, 2829–2840.

    Article  Google Scholar 

  111. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  Google Scholar 

  112. Hwang, J.; Jo, C.; Kim, M. G.; Chun, J.; Lim, E.; Kim, S.; Jeong, S.; Kim, Y.; Lee, J. Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 2015, 9, 5299–5309.

    Article  Google Scholar 

  113. Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K.-H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175–1187.

    Article  Google Scholar 

  114. Eom, K.; Jung, J.; Lee, J. T.; Lair, V.; Joshi, T.; Lee, S. W.; Lin, Z. Q.; Fuller, T. F. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 2015, 12, 314–321.

    Article  Google Scholar 

  115. Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D. Tissue-like silicon nanowiresbased three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 2015, 15, 3907–3916.

    Article  Google Scholar 

  116. Di Lecce, D.; Brutti, S.; Panero, S.; Hassoun, J. A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater. Lett. 2015, 139, 329–332.

    Article  Google Scholar 

  117. Wang, G.; Wang, H.; Bai, J. T. Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries. J. Alloy. Compd. 2015, 627, 174–181.

    Article  Google Scholar 

  118. Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.

    Article  Google Scholar 

  119. Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.

    Article  Google Scholar 

  120. Brutti, S.; Hassoun, J.; Scrosati, B.; Lin, C.-Y.; Wu, H.; Hsieh, H.-W. A high power Sn–C/C–LiFePO4 lithium ion battery. J. Power Sources 2012, 217, 72–76.

    Article  Google Scholar 

  121. Mhamane, D.; Kim, H.-K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K.-B. Rusted iron wire waste into high performance anode (a-Fe2O3) for Li-ion batteries: An efficient waste management approach. Green Chem. 2016, 18, 1395–1404.

    Article  Google Scholar 

  122. Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance Lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.

    Article  Google Scholar 

  123. Elia, G. A.; Nobili, F.; Tossici, R.; Marassi, R.; Savoini, A.; Panero, S.; Hassoun, J. Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. J. Power Sources 2015, 275, 227–233.

    Article  Google Scholar 

  124. Ni, W.; Cheng, J. L.; Shi, L. Y.; Li, X. D.; Wang, B.; Guan, Q.; Huang, L.; Gu, G. F.; Li, H. Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. J. Mater. Chem. A 2014, 2, 19122–19130.

    Article  Google Scholar 

  125. Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

    Article  Google Scholar 

  126. Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188.

    Article  Google Scholar 

  127. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  128. Sun, W.; Hu, R. Z.; Liu, H.; Zeng, M. Q.; Yang, L. C.; Wang, H. H.; Zhu, M. Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 2014, 268, 610–618.

    Article  Google Scholar 

  129. Eom, K.; Joshi, T.; Bordes, A.; Do, I.; Fuller, T. F. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. J. Power Sources 2014, 249, 118–124.

    Article  Google Scholar 

  130. Ji, L. W.; Zheng, H. H.; Ismach, A.; Tan, Z. K.; Xun, S. D.; Lin, E.; Battaglia, V.; Srinivasan, V.; Zhang, Y. G. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 2012, 1, 164–171.

    Article  Google Scholar 

  131. Arun, N.; Aravindan, V.; Jayaraman, S.; Madhavi, S. Unveiling the fabrication of “rocking-chair” type 3.2 and 1.2 V class cells using spinel LiNi0.5Mn1.5O4 as cathode with Li4Ti5O12. J. Phys. Chem. C 2015, 119, 24332–24336.

    Article  Google Scholar 

  132. Arun, N.; Aravindan, V.; Jayaraman, S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Exceptional performance of a high voltage spinel LiNi0.5Mn1.5O4 cathode in all one dimensional architectures with an anatase TiO2 anode by electrospinning. Nanoscale 2014, 6, 8926–8934.

    Article  Google Scholar 

  133. Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.

    Google Scholar 

  134. Wang, N.; Yue, J.; Chen, L.; Qian, Y. T.; Yang, J. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10348–10355.

    Article  Google Scholar 

  135. Liu, Y.; Elzatahry, A. A.; Luo, W.; Lan, K.; Zhang, P. F.; Fan, J. W.; Wei, Y.; Wang, C.; Deng, Y. H.; Zheng, G. F. et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 2016, 25, 80–90.

    Article  Google Scholar 

  136. Dylla, A. G.; Henkelman, G.; Stevenson, K. J. Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res. 2013, 46, 1104–1112.

    Article  Google Scholar 

  137. Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

    Article  Google Scholar 

  138. Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13706–13710.

    Article  Google Scholar 

  139. Fröschl, T.; Hörmann, U.; Kubiak, P.; Kucerová, G.; Pfanzelt, M.; Weiss, C. K.; Behm, R. J.; Hüsing, N.; Kaiser, U.; Landfester, K. et al. High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 2012, 41, 5313–5360.

    Article  Google Scholar 

  140. Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.

    Article  Google Scholar 

  141. Han, H.; Song, T.; Bae, J.-Y.; Nazar, L. F.; Kim, H.; Paik, U. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532–4536.

    Article  Google Scholar 

  142. Fehse, M.; Cavaliere, S.; Lippens, P. E.; Savych, I.; Iadecola, A.; Monconduit, L.; Jones, D. J.; Rozière, J.; Fischer, F.; Tessier, C. et al. Nb-doped TiO2 nanofibers for lithium ion batteries. J. Phys. Chem. C 2013, 117, 13827–13835.

    Article  Google Scholar 

  143. Petkovich, N. D.; Wilson, B. E.; Rudisill, S. G.; Stein, A. Titania–carbon nanocomposite anodes for lithium ion batteries—effects of confined growth and phase synergism. ACS Appl. Mater. Interfaces 2014, 6, 18215–18227.

    Article  Google Scholar 

  144. Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W.; Kim, S.; Liu, L.; Paik, U. TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491–501.

    Article  Google Scholar 

  145. Plylahan, N.; Letiche, M.; Barr, M. K. S.; Ellis, B.; Maria, S.; Phan, T. N. T.; Bloch, E.; Knauth, P.; Djenizian, T. High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources 2015, 273, 1182–1188.

    Article  Google Scholar 

  146. Takami, N.; Harada, Y.; Iwasaki, T.; Hoshina, K.; Yoshida, Y. Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 2015, 273, 923–930.

    Article  Google Scholar 

  147. Xin, X.; Zhou, X. F.; Wu, J. H.; Yao, X. Y.; Liu, Z. P. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 2012, 6, 11035–11043.

    Article  Google Scholar 

  148. Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale 2013, 5, 5973–5980.

    Article  Google Scholar 

  149. Plylahan, N.; Letiche, M.; Barr, M. K. S.; Djenizian, T. All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochem. Commun. 2014, 43, 121–124.

    Article  Google Scholar 

  150. Kumar, P. S.; Aravindan, V.; Sundaramurthy, J.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S.; Madhavi, S. High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Adv. 2012, 2, 7983–7987.

    Article  Google Scholar 

  151. Game, O.; Kumari, T.; Singh, U.; Aravindan, V.; Madhavi, S.; Ogale, S. B. (001) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4. Energy Stor. Mater. 2016, 3, 106–112.

    Google Scholar 

  152. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 2006, 18, 2597–2600.

    Article  Google Scholar 

  153. Ming, H.; Ming, J.; Oh, S.-M.; Lee, E.-J.; Huang, H.; Zhou, Q.; Zheng, J. W.; Sun, Y.-K. High dispersion of TiO2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi0.5Mn1.5O4. J. Mater. Chem. A 2014, 2, 18938–18945.

    Article  Google Scholar 

  154. Wang, C.; Wu, L. X.; Wang, H.; Zuo, W. H.; Li, Y. Y.; Liu, J. P. Fabrication and shell optimization of synergistic TiO2-MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524–3533.

    Article  Google Scholar 

  155. Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem., Int. Ed. 2012, 51, 7459–7463.

    Article  Google Scholar 

  156. Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

    Article  Google Scholar 

  157. Park, K.-S.; Benayad, A.; Kang, D.-J.; Doo, S.-G. Nitridationdriven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.

    Article  Google Scholar 

  158. Jung, H.-G.; Myung, S.-T.; Yoon, C. S.; Son, S.-B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y.-K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.

    Article  Google Scholar 

  159. Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

    Article  Google Scholar 

  160. Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.; Ge, X. W. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Power Sources 2008, 183, 355–360.

    Article  Google Scholar 

  161. Cui, W.; He, Y.-B.; Tang, Z.-Y.; Yang, Q.-H.; Xu, Q.; Su, F.-Y.; Ma, L. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery. J. Solid State Electr. 2012, 16, 265–271.

    Article  Google Scholar 

  162. Jaiswal, A.; Horne, C. R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J. Electrochem. Soc. 2009, 156, A1041–A1046.

    Article  Google Scholar 

  163. Liu, W.; Chen, Z.; Zhou, G. M.; Sun, Y. M.; Lee, H. R.; Liu, C.; Yao, H. B.; Bao, Z.; Cui, Y. 3D porous spongeinspired electrode for stretchable lithium-ion batteries. Adv. Mater. 2016, 28, 3578–3583.

    Google Scholar 

  164. Wang, W.; Choi, D.; Yang, Z. G. Li-ion battery with LiFePO4 cathode and Li4Ti5O12 anode for stationary energy storage. Metall. Mater. Trans. A 2013, 44, 21–25.

    Article  Google Scholar 

  165. Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469–475.

    Article  Google Scholar 

  166. Cheah, Y. L.; Aravindan, V.; Madhavi, S. Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 2013, 160, A1016–A1024.

    Article  Google Scholar 

  167. Ni, J. F.; Liu, W.; Liu, J. Z.; Gao, L. J.; Chen, J. T. Investigation on a 3.2 V LiCoPO4/Li4Ti5O12 full battery. Electrochem. Commun. 2013, 35, 1–4.

    Article  Google Scholar 

  168. Du, C. Q.; Tang, Z. Y.; Wu, J. W.; Tang, H. Q.; Zhang, X. H. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material. Electrochim. Acta 2014, 125, 58–64.

    Article  Google Scholar 

  169. Du, G. D.; Winton, B. R.; Hashim, I. M.; Sharma, N.; Konstantinov, K.; Reddy, M. V.; Guo, Z. P. Mass production of Li4Ti5O12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Adv. 2014, 4, 38568–38574.

    Article  Google Scholar 

  170. Zhu, G.-N.; Chen, L.; Wang, Y.-G.; Wang, C.-X.; Che, R.-C.; Xia, Y.-Y. Binary Li4Ti5O12-Li2Ti3O7 nanocomposite as an anode material for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 640–647.

    Article  Google Scholar 

  171. Zhu, G.-N.; Liu, H.-J.; Zhuang, J.-H.; Wang, C.-X.; Wang, Y.-G.; Xia, Y.-Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.

    Article  Google Scholar 

  172. Guo, J. L.; Zou, W. H.; Cai, Y. J.; Chen, S. M.; Zhang, S. J.; Liu, J. P. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J. Mater. Chem. A 2015, 3, 4938–4944.

    Article  Google Scholar 

  173. Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Exceptional performance of TiNb2O7 anode in all one-dimensional architecture by electrospinning. ACS Appl. Mater. Interfaces 2014, 6, 8660–8666.

    Article  Google Scholar 

  174. Roh, H.-K.; Kim, H.-K.; Roh, K. C.; Kim, K.-B. LiTi2(PO4)3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 2014, 4, 31672–31677.

    Article  Google Scholar 

  175. Vidal-Abarca, C.; Lavela, P.; Aragon, M. J.; Plylahan, N.; Tirado, J. L. The influence of iron substitution on the electrochemical properties of Li1+x Ti2–x Fex(PO4)3/C composites as electrodes for lithium batteries. J. Mater. Chem. 2012, 22, 21602–21607.

    Article  Google Scholar 

  176. Aravindan, V.; Chuiling, W.; Madhavi, S. Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Adv. 2012, 2, 7534–7539.

    Article  Google Scholar 

  177. Han, J.-T.; Huang, Y.-H.; Goodenough, J. B. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011, 23, 2027–2029.

    Article  Google Scholar 

  178. Guo, B. K.; Yu, X. Q.; Sun, X.-G.; Chi, M. F.; Qiao, Z.-A.; Liu, J.; Hu, Y.-S.; Yang, X.-Q.; Goodenough, J. B.; Dai, S. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 2014, 7, 2220–2226.

    Article  Google Scholar 

  179. Ming, H.; Ming, J.; Oh, S.-M.; Tian, S.; Zhou, Q.; Huang, H.; Sun, Y.-K.; Zheng, J. W. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery. ACS Appl. Mater. Interfaces 2014, 6, 15499–15509.

    Google Scholar 

  180. Li, W. H.; Yang, L.; Wang, J. Q.; Xiang, B.; Yu, Y. Threedimensionally interconnected TaS3 nanowire network as anode for high-performance flexible Li-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5629–5633.

    Article  Google Scholar 

  181. Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 2015, 12, 816–823.

    Article  Google Scholar 

  182. Wang, Z. Y.; Liu, C.-J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277–293.

    Article  Google Scholar 

  183. Ming, H.; Ming, J.; Kwak, W.-J.; Yang, W. J.; Zhou, Q.; Zheng, J. W.; Sun, Y.-K. Fluorine-doped porous carbondecorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochim. Acta 2015, 169, 291–299.

    Article  Google Scholar 

  184. Liang, C. L.; Huang, S. C.; Zhao, W. X.; Liu, W. Y.; Chen, J.; Liu, H.; Tong, Y. X. Polyhedral Fe3O4 nanoparticles for lithium ion storage. New J. Chem. 2015, 39, 2651–2656.

    Article  Google Scholar 

  185. Liang, C. L.; Zhai, T.; Wang, W.; Chen, J.; Zhao, W. X.; Lu, X. H.; Tong, Y. X. Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J. Mater. Chem. A 2014, 2, 7214–7220.

    Article  Google Scholar 

  186. Suryawanshi, A.; Aravindan, V.; Mhamane, D.; Yadav, P.; Patil, S.; Madhavi, S.; Ogale, S. Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Stor. Mater. 2015, 1, 152–157.

    Article  Google Scholar 

  187. Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. LiMnPO4—A next generation cathode material for lithiumion batteries. J. Mater. Chem. A 2013, 1, 3518–3539.

    Article  Google Scholar 

  188. Hassoun, J.; Croce, F.; Hong, I.; Scrosati, B. Lithium-iron battery: Fe2O3 anode versus LiFePO4 cathode. Electrochem. Commun. 2011, 13, 228–231.

    Article  Google Scholar 

  189. Hariharan, S.; Ramar, V.; Joshi, S. P.; Balaya, P. Developing a light weight lithium ion battery—An effective material and electrode design for high performance conversion anodes. RSC Adv. 2013, 3, 6386–6394.

    Article  Google Scholar 

  190. Verrelli, R.; Brescia, R.; Scarpellini, A.; Manna, L.; Scrosati, B.; Hassoun, J. A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode. RSC Adv. 2014, 4, 61855–61862.

    Google Scholar 

  191. Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4-C/LiFePO4-CNT: A novel high-power lithium-ion battery with excellent cycling performance. Adv. Energy Mater. 2014, 4, 1400054.

    Article  Google Scholar 

  192. Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core–shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763–2776.

    Article  Google Scholar 

  193. Verrelli, R.; Hassoun, J.; Farkas, A.; Jacob, T.; Scrosati, B. A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery. J. Mater. Chem. A 2013, 1, 15329–15333.

    Article  Google Scholar 

  194. Verrelli, R.; Scrosati, B.; Sun, Y.-K.; Hassoun, J. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. ACS Appl. Mater. Interfaces 2014, 6, 5206–5211.

    Article  Google Scholar 

  195. Balogun, M.-S.; Qiu, W. T.; Luo, Y.; Huang, Y. C.; Yang, H.; Li, M. Y.; Yu, M. H.; Liang, C. L.; Fang, P. P.; Liu, P. et al. Improving the lithium-storage properties of selfgrown nickel oxide: A back-up from TiO2 nanoparticles. ChemElectroChem 2015, 2, 1243–1248.

    Article  Google Scholar 

  196. Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.

    Article  Google Scholar 

  197. Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y.-S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231–20236.

    Article  Google Scholar 

  198. Zhang, Y.; Nie, P.; Shen, L. F.; Xu, G. Y.; Deng, H. F.; Luo, H. F.; Zhang, X. G. Rhombohedral NASICONstructured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv. 2014, 4, 8627–8631.

    Article  Google Scholar 

  199. Whittingham, M. S.; Song, Y. N.; Lutta, S.; Zavalij, P. Y.; Chernova, N. A. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 2005, 15, 3362–3379.

    Article  Google Scholar 

  200. Yuan, G. H.; Wang, G.; Wang, H.; Bai, J. T. Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries. J. Alloy. Compd. 2016, 660, 62–72.

    Article  Google Scholar 

  201. Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628.

    Article  Google Scholar 

  202. Zhao, Y.; Song, Z. X.; Li, X.; Sun, Q.; Cheng, N. C.; Lawes, S.; Sun, X. L. Metal organic frameworks for energy storage and conversion. Energy Stor. Mater. 2016, 2, 35–62.

    Article  Google Scholar 

  203. Li, C.; Hu, X. S.; Lou, X. B.; Chen, Q.; Hu, B. W. Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 2016, 52, 2035–2038.

    Article  Google Scholar 

  204. Hu, Z.; Liu, Q. N.; Sun, W. Y.; Li, W. J.; Tao, Z. L.; Chou, S.-L.; Chen, J.; Dou, S.-X. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532–535.

    Article  Google Scholar 

  205. Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117–124.

    Article  Google Scholar 

  206. Zhang, X. F.; Kuhnel, R.-S.; Schroeder, M.; Balducci, A. Revisiting Li3V2(PO4)3 as an anode—An outstanding negative electrode for high power energy storage devices. J. Mater. Chem. A 2014, 2, 17906–17913.

    Article  Google Scholar 

  207. Mao, W.-F.; Ma, Y.; Liu, S.-K.; Tang, Z.-Y.; Fu, Y.-B. Li2NaV2(PO4)3. Electrochim. Acta 2014, 147, 498–505.

  208. Moorhead-Rosenberg, Z.; Allcorn, E.; Manthiram, A. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwaveassisted chemical lithiation process. Chem. Mater. 2014, 26, 5905–5913.

    Article  Google Scholar 

  209. Gay, E. C.; Vissers, D. R.; Martino, F. J.; Anderson, K. E. Performance characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 1976, 123, 1591–1596.

    Article  Google Scholar 

  210. Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.

    Article  Google Scholar 

  211. Lin, M.-C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D.-Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B.-J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.

    Article  Google Scholar 

  212. Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater. 2015, 27, 2189–2194.

    Article  Google Scholar 

  213. Jayaraman, S.; Aravindan, V.; Shubha, N.; Ulaganathan, M.; Madhavi, S. Exploring anatase TiO2 nanofibers as new cathode for constructing 1. 6 V class “rocking-chair” type Li-ion cells. Part. Part. Syst. Char., in press, DOI: 10.1002/ppsc.201600044.

  214. Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.

    Article  Google Scholar 

  215. Balogun, M.-S.; Luo, Y.; Lyu, F.; Wang, F. X.; Yang, H.; Li, H. B.; Liang, C. L.; Huang, M.; Huang, Y. C.; Tong, Y. X. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9733–9744.

    Article  Google Scholar 

  216. Qiu, W. D.; Xia, J.; Zhong, H. M.; He, S. X.; Lai, S. H.; Chen, L. P. L-cysteine-assisted synthesis of cubic pyrite/ nitrogen-doped graphene composite as anode material for lithium-ion batteries. Electrochim. Acta 2014, 137, 197–205.

    Article  Google Scholar 

  217. Hassoun, J.; Lee, K.-S.; Sun, Y.-K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143.

    Article  Google Scholar 

  218. Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 2013, 5, 10636–10645.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Mai or Yexiang Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogun, MS., Qiu, W., Luo, Y. et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 9, 2823–2851 (2016). https://doi.org/10.1007/s12274-016-1171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1171-1

Keywords

Navigation