Skip to main content
Log in

Simulation Analysis of High Field-Effect Mobility in p-Channel-Based Cylindrical Thin-Film Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin monoxide (SnO) has gained considerable attention in recent years because of its high hole mobility, transparency, and possibility for mass production. This study investigates the simulation of p-channel SnO thin-film transistors (TFTs) using cylindrical geometry using both a 3D numerical simulation approach and theoretical insights. To analyze the electrical performance of the devices, the gate metal work function varied from 4.4 eV to 5.0 eV. Among the simulated cylindrical TFTs (CTFTs), the 4.4 eV device shows maximum field-effect mobility of 45.39 cm2/V s and a threshold voltage (Vth) of 1.38 V. This is the highest value for p-channel TFTs. In addition, the simulated characteristics are compared with experimental characteristics by adjusting the defect parameter values. A simulation of the leakage current density and gate capacitance was also performed to estimate the dielectric layer quality. The results were determined to be 8.5 × 10-10 A/cm2 and 7.2 × 10-7 F/cm2 for 4.4 eV CTFTs, respectively. Theoretically, first-principles calculations have been performed within density functional theory (DFT) using Tran–Blaha modified Becke–Johnson (TB-mBJ) functionals. The electronic band structure calculations estimate the electronic band gap as 2.2 eV.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee, and S.Y. Choi, TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Adv. Mater. 32, 1 (2020).

    Article  CAS  Google Scholar 

  2. T. C. Chang, Y. C. Tsao, P. H. Chen, M. C. Tai, S. P. Huang, W. C. Su, and G. F. Chen, Flexible Low-Temperature Polycrystalline Silicon Thin-Film Transistors. Mater. Today Adv. 5, 0 (2020).

  3. L. Zhang, W. Xiao, W. Wu, and B. Liu, Research Progress on Flexible Oxide-Based Thin Film Transistors. Appl. Sci. 9, (2019).

  4. G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, Impact of Device Scaling on the Electrical Properties of MoS2 Field-Effect Transistors. Sci. Rep. 11, 1 (2021).

    Article  CAS  Google Scholar 

  5. N. Gowthaman and V.M. Srivastava, Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. J. Mater. Sci. 57, 8381 (2022).

    Article  CAS  Google Scholar 

  6. M. Alam, K. Kumar, and V. Dutta, Comparative Efficiency Analysis for Silicon, Silicon Carbide MOSFETs and IGBT Device for DC–DC Boost Converter. SN Appl. Sci. 1, 1 (2019).

    Article  CAS  Google Scholar 

  7. S.K. Dargar and V.M. Srivastava, Design of Double-Gate Tri-Active Layer Channel Based IGZO Thin-Film Transistor for Improved Performance of Ultra-Low-Power RFID Rectifier. IEEE Access 8, 194652 (2020).

    Article  Google Scholar 

  8. T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, T. Inokuma, and N. Tokuda, Inversion Channel Mobility and Interface State Density of Diamond MOSFET Using N-Type Body with Various Phosphorus Concentrations. Appl. Phys. Lett. 114, 42101 (2019).

    Article  CAS  Google Scholar 

  9. X. Chen, C. Liu, and S. Mao, Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Lett. 12, 1 (2020).

    Article  CAS  Google Scholar 

  10. Z. Ramezani and A.A. Orouji, Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano Scale SOI MOSFETs. J. Electron. Mater. 46, 2269 (2017).

    Article  CAS  Google Scholar 

  11. F. Kenarangi and I. Partin-Vaisband, Leveraging Independent Double-Gate FinFET Devices for Machine Learning Classification. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 4356 (2019).

    Article  Google Scholar 

  12. D. Nagy, G. Indalecio, A.J. Garcia-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, FinFET versus Gate-All-around Nanowire FET: Performance, Scaling, and Variability. IEEE J. Electron Devices Soc. 6, 332 (2018).

    Article  CAS  Google Scholar 

  13. V.M. Srivastava, K.S. Yadav, and G. Singh, Design and Performance Analysis of Cylindrical Surrounding Double-Gate MOSFET for RF Switch. Microelectronics J. 42, 1124 (2011).

    Article  Google Scholar 

  14. M.A. Uchechukwu and V.M. Srivastava, Channel Length Scaling Pattern for Cylindrical Surrounding Double-Gate (CSDG) MOSFET. IEEE Access 8, 121204 (2020).

    Article  Google Scholar 

  15. C.W. Shih, A. Chin, C.F. Lu, and W.F. Su, Remarkably High Hole Mobility Metal-Oxide Thin-Film Transistors. Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  16. J.A. Caraveo-Frescas, P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, and H.N. Alshareef, Record Mobility in Transparent P-Type Tin Monoxide Films and Devices by Phase Engineering. ACS Nano 7, 5160 (2013).

    Article  CAS  Google Scholar 

  17. V. G. Akkili, R. Thangavel, and V. M. Srivastava, Influence of Dielectrics and Channel Defects on the Electrical Performance of Oxide-Based p-Channel TFTs for CMOS Applications, in LAEDC 2021 - IEEE Latin America Electron Devices Conference (2021), p. 19.

  18. Y. Xie, S. Ouyang, D. Wang, W.Y. Lee, and H.H. Fong, Highly Smooth and Conductive Silver Film with Metallo-Organic Decomposition Ink for All-Solution-Processed Flexible Organic Thin-Film Transistors. J. Mater. Sci. 55, 15908 (2020).

    Article  CAS  Google Scholar 

  19. I.B. Misirlioglu, C. Sen, M.T. Kesim, and S.P. Alpay, Low-Voltage Ferroelectric-Paraelectric Superlattices as Gate Materials for Field-Effect Transistors. J. Mater. Sci. 51, 487 (2015).

    Article  CAS  Google Scholar 

  20. H. Du, X. Lin, Z. Xu, and D. Chu, Electric Double-Layer Transistors: A Review of Recent Progress, Vol. 50 (Berlin: Springer, 2015).

    Google Scholar 

  21. K.A. Jones, T.P. Chow, M. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, and G.S. Tompa, AlGaN Devices and Growth of Device Structures. J. Mater. Sci. 50, 3267 (2015).

    Article  CAS  Google Scholar 

  22. V.C. Anitha, A.N. Banerjee, and S.W. Joo, Recent Developments in TiO2 as N- and p-Type Transparent Semiconductors: Synthesis, Modification, Properties, and Energy-Related Applications. J. Mater. Sci. 50, 7495 (2015).

    Article  CAS  Google Scholar 

  23. S. Locci, M. Maccioni, E. Orgiu, and A. Bonfiglio, An Analytical Model for Cylindrical Thin-Film Transistors. IEEE Trans. Electron Devices 54, 2362 (2007).

    Article  CAS  Google Scholar 

  24. V. G. Akkili and V. M. Srivastava, 3D Numerical Simulation and Electrical Performance Analysis of P-Channel Cylindrical TFTs for New Man-Machine Interface Applications, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 409.

  25. J.H.K. Verma, S. Haldar, R.S. Gupta, and M. Gupta, Modeling and Simulation of Cylindrical Surrounding Double-Gate (CSDG) MOSFET with Vacuum Gate Dielectric for Improved Hot-Carrier Reliability and RF Performance. J. Comput. Electron. 15, 657 (2016).

    Article  CAS  Google Scholar 

  26. K.P. Pradhan, M.R. Kumar, S.K. Mohapatra, and P.K. Sahu, Analytical Modeling of Threshold Voltage for Cylindrical Gate All Around (CGAA) MOSFET Using Center Potential. Ain Shams Eng. J. 6, 1171 (2015).

    Article  Google Scholar 

  27. K. Ellmer, Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 6, 809 (2012).

    Article  CAS  Google Scholar 

  28. M. Mativenga, F. Haque, M.M. Billah, and J.G. Um, Origin of Light Instability in Amorphous IGZO Thin-Film Transistors and Its Suppression. Sci. Rep. 11, 1 (2021).

    Article  CAS  Google Scholar 

  29. Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, and H.N. Alshareef, Recent Developments in P-Type Oxide Semiconductor Materials and Devices. Adv. Mater. 28, 3831 (2016).

    Article  CAS  Google Scholar 

  30. R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, Complementary Metal Oxide Semiconductor Technology with and on Paper. Adv. Mater. 23, 4491 (2011).

    Article  CAS  Google Scholar 

  31. R. Barros, K. J. Saji, J. C. Waerenborgh, P. Barquinha, L. Pereira, E. Carlos, R. Martins, and E. Fortunato, Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. Nanomaterials 9, (2019).

  32. Z.W. Shang, H.H. Hsu, Z.W. Zheng, and C.H. Cheng, Progress and Challenges in P-Type Oxide-Based Thin Film Transistors. Nanotechnol. Rev. 8, 422 (2019).

    Article  CAS  Google Scholar 

  33. A.V. Gowd and R. Thangavel, Hydrothermal Growth of Undoped and Zn-Doped SnO Nanocrystals: A Frequency Dependence of AC Conductivity and Dielectric Response Studies. Semiconductors 54, 73 (2020).

    Article  CAS  Google Scholar 

  34. N. Gowthaman and V.M. Srivastava, Analysis of InN/La2O3 twosome for double-gate MOSFETs for radio frequency applications. Mater. Sci. Forum 1048, 147 (2022).

    Article  Google Scholar 

  35. A. Liu, H. Zhu, W.T. Park, S.J. Kim, H. Kim, M.G. Kim, and Y.Y. Noh, High-Performance p-Channel Transistors with Transparent Zn Doped-CuI. Nat. Commun. 11, 1 (2020).

    CAS  Google Scholar 

  36. M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Serby, P. Jenus, B.C. Hauback, R. Tofan, A.E. Gunnaes, C. Persson, O.M. Levvik, and T.G. Finstad, The Role of Grain Boundary Scattering in Reducing the Thermal Conductivity of Polycrystalline XNiSn (X = Hf, Zr, Ti) Half-Heusler Alloys. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  37. V. G. Akkili and V. M. Srivastava, Performance Optimization of P-Channel SnO Cylindrical Thin Film Transistors (CTFT) Using 3D Modelling, in 34th International System-on-Chip Conference (SOCC) (IEEE, 2022), p. 112.

  38. K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Effect of Plasma Fluorination in P-Type SnO TFTs: Experiments, Modeling, and Simulation. IEEE Trans. Electron Devices 66, 1314 (2019).

    Article  CAS  Google Scholar 

  39. X. Li, L. Liang, H. Cao, R. Qin, H. Zhang, J. Gao, and F. Zhuge, Determination of Some Basic Physical Parameters of SnO Based on SnO/Si Pn Heterojunctions. Appl. Phys. Lett. 106, (2015).

  40. A.W. Lee, D. Le, K. Matsuzaki, and K. Nomura, Hydrogen-Defect Termination in SnO for p-Channel TFTs. ACS Appl. Electron. Mater. 2, 1162 (2020).

    Article  CAS  Google Scholar 

  41. K.J. Saji, Y.P. Venkata Subbaiah, K. Tian, and A. Tiwari, P-Type SnO Thin Films and SnO/ZnO Heterostructures for All-Oxide Electronic and Optoelectronic Device Applications. Thin Solid Films 605, 193 (2016).

    Article  CAS  Google Scholar 

  42. D.P. Rai, T.V. Vu, A. Laref, M.A. Hossain, E. Haque, S. Ahmad, R. Khenata, and R.K. Thapa, Electronic Properties and Low Lattice Thermal Conductivity (Κl) of Mono-Layer (ML) MoS2: FP-LAPW Incorporated with Spin-Orbit Coupling (SOC). RSC Adv. 10, 18830 (2020).

    Article  CAS  Google Scholar 

  43. W.L. Hsue and W.C. Chang, Real Discrete Fractional Fourier, Hartley, Generalized Fourier and Generalized Hartley Transforms with Many Parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2594 (2015).

    Article  Google Scholar 

  44. P. Blaha, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vol. 2 (2018).

  45. A.F. Paterson and T.D. Anthopoulos, Enabling Thin-Film Transistor Technologies and the Device Metrics That Matter. Nat. Commun. 9, 1 (2018).

    Article  CAS  Google Scholar 

  46. H. Hu, J. Zhu, M. Chen, T. Guo, and F. Li, Inkjet-Printed p-Type Nickel Oxide Thin-Film Transistor. Appl. Surf. Sci. 441, 295 (2018).

    Article  CAS  Google Scholar 

  47. Z. Chen, L. Lan, and J. Peng, Approaching Subthreshold-Swing Limit for Thin-Film Transistors by Using a Giant-Dielectric-Constant Gate Dielectric. RSC Adv. 9, 27117 (2019).

    Article  CAS  Google Scholar 

  48. K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Physical Modeling of P-Type Fluorinated Al-Doped Tin-Oxide Thin Film Transistors. IEEE J. Electron Devices Soc. 8, 948 (2020).

    Article  CAS  Google Scholar 

  49. P.C. Chen, Y.C. Chiu, Z.W. Zheng, M.H. Lin, C.H. Cheng, G.L. Liou, H.H. Hsu, and H.L. Kao, Fast Low-Temperature Plasma Process for the Application of Flexible Tin-Oxide-Channel Thin Film Transistors. IEEE Trans. Nanotechnol. 16, 876 (2017).

    Article  CAS  Google Scholar 

  50. W. Maeng, S.H. Lee, J.D. Kwon, J. Park, and J.S. Park, Atomic Layer Deposited P-Type Copper Oxide Thin Films and the Associated Thin Film Transistor Properties. Ceram. Int. 42, 5517 (2016).

    Article  CAS  Google Scholar 

  51. J. Jiang, X. Wang, Q. Zhang, J. Li, and X.X. Zhang, Thermal Oxidation of Ni Films for P-Type Thin-Film Transistors. Phys. Chem. Chem. Phys. 15, 6875 (2013).

    Article  CAS  Google Scholar 

  52. Y.J. Han, Y.J. Choi, C.Y. Jeong, D. Lee, S.H. Song, and H.I. Kwon, Environment-Dependent Bias Stress Stability of P-Type SnO Thin-Film Transistors. IEEE Electron Device Lett. 36, 466 (2015).

    Article  CAS  Google Scholar 

  53. V. G. Akkili and V. M. Srivastava, Modeling and Electrical Performance Optimization of P-Type SnO-Based Cylindrical Thin-Film Transistors, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 834.

  54. C.W. Zhong, H.C. Lin, K.C. Liu, and T.Y. Huang, Improving Electrical Performances of P-Type SnO Thin-Film Transistors Using Double-Gated Structure. IEEE Electron Device Lett. 36, 1053 (2015).

    Article  CAS  Google Scholar 

  55. P.C. Chen, Y.C. Chiu, Z.W. Zheng, C.H. Cheng, and Y.H. Wu, P-Type Tin-Oxide Thin Film Transistors for Blue-Light Detection Application. Phys. Status Solidi Rapid Res. Lett. 10, 919 (2016).

    Article  CAS  Google Scholar 

  56. C. Avis, H.R. Hwang, and J. Jang, Effect of Channel Layer Thickness on the Performance of Indium-Zinc-Tin Oxide Thin Film Transistors Manufactured by Inkjet Printing. ACS Appl. Mater. Interfaces 6, 10941 (2014).

    Article  CAS  Google Scholar 

  57. L. Qiang, W. Liu, Y. Pei, G. Wang, and R. Yao, Trap States Extraction of P-Channel SnO Thin-Film Transistors Based on Percolation and Multiple Trapping Carrier Conductions. Solid. State. Electron. 129, 163 (2017).

    Article  CAS  Google Scholar 

  58. L.T. Nguyen and G. Makov, High-pressure Phases of Sno and Pbo: A Density Functional Theory Combined with an Evolutionary Algorithm Approach. Materials (Basel). 14, 6552 (2021).

    Article  CAS  Google Scholar 

  59. C. Bhandari and W.R.L. Lambrecht, Instability of the Layered Orthorhombic Post-Perovskite Phase of SrTiO3 and Other Candidate Orthorhombic Phases under Pressure. Solid State Commun. 274, 27 (2018).

    Article  CAS  Google Scholar 

  60. D. Singh, S.K. Gupta, I. Lukačević, M. Mužević, Y. Sonvane, and R. Ahuja, Effect of Electric Field on Optoelectronic Properties of Indiene Monolayer for Photoelectric Nanodevices. Sci. Rep. 9, 1 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

No funding involved.

Author information

Authors and Affiliations

Authors

Contributions

Viswanath G. Akkili (VGA) and Viranjay M. Srivastava (VMS) conducted this research; VGA designed and analyzed the model with data and wrote this article; VMS has verified the result with the designed model; R Thangavel (RT) and N Prudhvi Raju (NPR) did the theoretical simulation of SnO. All authors approved the final version.

Corresponding author

Correspondence to Viswanath G. Akkili.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkili, V.G., Raju, N.P., Thangavel, R. et al. Simulation Analysis of High Field-Effect Mobility in p-Channel-Based Cylindrical Thin-Film Transistors. J. Electron. Mater. 51, 5015–5025 (2022). https://doi.org/10.1007/s11664-022-09753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09753-x

Keywords

Navigation