Skip to main content

Advertisement

Log in

Low-voltage ferroelectric–paraelectric superlattices as gate materials for field-effect transistors

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The demand for new materials to be used in field-effect transistors and similar devices with low energy loss is more than ever before as integrated circuits have become a considerable source of energy consumption. One of the challenges in designing such energy efficient logic devices is finding suitable dielectric materials systems for the gate that controls the drain current in a p-type channel. A fundamental limit for energy efficiency exists in such devices imposed by the polarizability of conventional linear gate dielectrics. Generating on/off states in the channel that differ by at least a million times in the magnitude of the drain current near saturation requires several volts of gate bias for the case of a linear dielectric material in a submicron device. In this study, we demonstrate that ferroelectric–paraelectric superlattice heterostructures can generate the same effect in a p-type channel for bias voltages much lower than in a linear high dielectric constant gate. We consider a metal/superlattice/p-type semiconductor stack for this purpose. Using a thermodynamic model, we show that the multi-domain state of the ferroelectric layers can be tailored and distinct on/off states of the channel are possible for gate bias voltages below 1 V. The origins of such functionality of ferroelectric–paraelectric superlattices are discussed with respect to material characteristics such as the phase transition temperature of the ferroelectric, total polarization, and the dielectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gruverman A, Wu D, Lu H, Wang Y, Jang HW, Folkman CM, Zhuravlev MY, Felker D, Rzchowki M, Eom CB, Tsymbal EY (2009) Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett 9:3539–3543

    Article  Google Scholar 

  2. Tsymbal EY, Gruverman A (2013) Ferroelectric tunnel junctions: beyond the barrier. Nat Mater 12:602–604

    Article  Google Scholar 

  3. Lu H, Lipatov A, Ryu S, Kim DJ, Lee H, Zhuravlev MY, Eom CB, Tsymbal EY, Sinitski A, Gruverman A (2014) Ferroelectric tunnel junctions with graphene electrodes. Nature 5:1–7

    Google Scholar 

  4. Watanabe Y (1995) Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention. Appl Phys Lett 66:1770–1772

    Article  Google Scholar 

  5. Mathews S, Ramesh R, Venkatesan T, Benedetto J (1997) Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276:238–240

    Article  Google Scholar 

  6. Ma TP, Han J (2002) Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett 23:386–388

    Article  Google Scholar 

  7. Hoffman J, Pan X, Reiner JW, Walker FJ, Han JP, Ahn CH, Ma TP (2010) Ferroelectric field effect transistors for memory applications. Adv Mater 22:2957–2961

    Article  Google Scholar 

  8. Van Hai L, Takahashi M, Sakai S (2010) Fabrication and characterization of sub-0.6-µm ferroelectric-gate field-effect transistors. Semicond Sci Technol 25:115013

    Article  Google Scholar 

  9. Salvatore GA, Lattanzio L, Bouvet D, Ionescu AM (2011) Modeling the temperature dependence of Fe-FET static characteristics based on Landau’s theory. IEEE Trans Electron Devices 58:3162–3169

    Article  Google Scholar 

  10. Salvatore GA, Lattanzio L, Bouvet D, Stolichnov I, Setter N, Ionescu AM (2010) Ferroelectric transistors with improved characteristics at high temperature. Appl Phys Lett 97:053503

    Article  Google Scholar 

  11. Jiang B, Tang M, Li J, Xiao Y, Tang Z, Cai H, Lv X, Zhou Y (2012) Large memory window and good retention characteristics of ferroelectric-gate field-effect transistor with Pt/Bi3.4Ce0.6Ti3O12/CeO2/Si structure. J Phys D 45:025102

    Article  Google Scholar 

  12. Tanakamaru S, Hatanaka T, Yajima R, Takahaski M, Shigeki S, Takeuchi K (2009) A 0.5 V operation, 32 % lower active power, 42 % lower leakage current, ferroelectric 6T-SRAM with VTH self-adjusting function for 60 % larger static noise margin. In: IEEE international on electron devices meeting, IEDM, pp 283–286

  13. Horiuchi T, Takahashi M, Li Q-H, Wang S, Sakai S (2010) Lowered operation voltage in Pt/SBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by oxynitriding Si. Semicond Sci Technol 25:055005

    Article  Google Scholar 

  14. Misirlioglu IB, Vasiliev AL, Aindow M, Alpay SP, Ramesh R (2004) Threading dislocation generation in epitaxial (Ba, Sr) TiO3 films grown on (001) LaAlO3 by pulsed laser deposition. Appl Phys Lett 84:1742–1744

    Article  Google Scholar 

  15. Sharma A, Ban ZG, Alpay SP, Mantese JV (2004) Effect of operating temperature and film thickness on the pyroelectric response of ferroelectric materials. Appl Phys Lett 84:4959–4961

    Article  Google Scholar 

  16. Okatan MB, Mantese JV, Alpay SP (2010) Effect of space charge on the polarization hysteresis characteristics of monolithic and compositionally graded ferroelectrics. Acta Mater 58:39–48

    Article  Google Scholar 

  17. Okatan MB, Mantese J, Alpay S (2009) Polarization coupling in ferroelectric multilayers. Phys Rev B 79:174113

    Article  Google Scholar 

  18. Eliseev EA, Morozovska AN (2009) General approach for the description of size effects in ferroelectric nanosystems. J Mater Sci 44:5149–5160. doi:10.1007/s10853-009-3473-0

    Article  Google Scholar 

  19. Tenne DA, Soukiassian A, Xi XX, Taylor TR, Hansen PJ, Speck JS, York RA (2004) Effect of thermal strain on the ferroelectric phase transition in polycrystalline Ba0.5Sr0.5TiO3 thin films studied by Raman spectroscopy. Appl Phys Lett 85:4124–4126

    Article  Google Scholar 

  20. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:583–586

    Article  Google Scholar 

  21. Misirlioglu IB, Vasiliev AL, Alpay SP, Aindow M, Ramesh R (2006) Defect microstructures in epitaxial PbZr0.2Ti0.8O3 films grown on (001) SrTiO3 by pulsed laser deposition. J Mater Sci 41:697–707. doi:10.1007/s10853-006-6488-9

    Article  Google Scholar 

  22. Weiss CV, Okatan MB, Alpay SP, Cole MW, Ngo E, Toonen RC (2009) Compositionally graded ferroelectric multilayers for frequency agile tunable devices. J Mater Sci 44:5364–5374. doi:10.1007/s10853-009-3514-8

    Article  Google Scholar 

  23. Han H, Lee K, Lee W, Alexe M, Hesse D, Baik S (2009) Fabrication of epitaxial nanostructured ferroelectrics and investigation of their domain structures. J Mater Sci 44:5167–5181. doi:10.1007/s10853-009-3528-2

    Article  Google Scholar 

  24. Arredondo M, Saunders M, Petraru A, Kohlstedt H, Vrejoiu I, Alexe M, Browning ND, Munroe P, Nagarajan V (2009) Structural defects and local chemistry across ferroelectric-electrode interfaces in epitaxial heterostructures. J Mater Sci 44:5297–5306. doi:10.1007/s10853-009-3548-y

    Article  Google Scholar 

  25. Lin Y, Chen CL (2009) Interface effects on highly epitaxial ferroelectric thin films. J Mater Sci 44:5274–5287. doi:10.1007/s10853-009-3664-8

    Article  Google Scholar 

  26. Morioka H, Saito K, Yokoyama S, Oikawa T, Kurosawa T, Funakubo H (2009) Effect of film thickness on ferroelectric domain structure and properties of Pb(Zr0.35Ti0.65)O3/SrRuO3/SrTiO3 heterostructures. J Mater Sci 44:5318–5324. doi:10.1007/s10853-009-3606-5

    Article  Google Scholar 

  27. Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM (2007) Strain tuning of ferroelectric thin films. Annu Rev Mater Res 37:589–626

    Article  Google Scholar 

  28. Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306:1005–1009

    Article  Google Scholar 

  29. Sun F, Khassaf H, Alpay SP (2014) Strain engineering of piezoelectric properties of strontium titanate thin films. J Mater Sci 49:5978–5985. doi:10.1007/s10853-014-8316-y

    Article  Google Scholar 

  30. Janolin PE (2009) Strain on ferroelectric thin films: example of Pb(Zr1−x Ti x )O3. J Mater Sci 44:5025–5048. doi:10.1007/s10853-014-8316-y

    Article  Google Scholar 

  31. Davis L, Rubin LG (1953) Some dielectric properties of barium-strontium titanate ceramics at 3000 megacycles. J Appl Phys 24:1194–1197

    Article  Google Scholar 

  32. Haun MJ, Zhuang ZQ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part III : curie constant and sixth-order polarization interaction dielectric stiffness coefficients. Ferroelectrics 99:45–54

    Article  Google Scholar 

  33. Soukiassian A, Tian W, Vaithyanathan V, Haeni JH, Chen LQ, Xi XX, Schlom DG, Tenne DA, Sun HP, Pan XQ, Choi KJ, Eom CB, Li YL, Jia QX, Constantion C, Feenstra RM, Bernhagen M, Reiche P, Uecker R (2008) Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy. J Mater Res 23:1417–1432

    Article  Google Scholar 

  34. Specht E, Christen H-M, Norton D, Boatner L (1998) X-Ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys Rev Lett 80:4317–4320

    Article  Google Scholar 

  35. Nakagawara O, Shimuta T, Makino T, Arai S, Tabata H, Kawai T (2002) Dependence of dielectric and ferroelectric behaviors on growth orientation in epitaxial BaTiO3/SrTiO3 superlattices. Vacuum 66:397–401

    Article  Google Scholar 

  36. Kim L, Jung D, Kim J, Kim YS, Lee J (2003) Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett 82:2118–2120

    Article  Google Scholar 

  37. Corbett MH, Bowman RM, Gregg JM, Foord DT (2001) Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices. Appl Phys Lett 79:815–817

    Article  Google Scholar 

  38. Tabata H, Tanaka H, Kawai T (1994) Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl Phys Lett 65:1970–1972

    Article  Google Scholar 

  39. Zubko P, Stucki N, Lichtensteiger C, Triscone J-M (2010) X-Ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys Rev Lett 104:187601

    Article  Google Scholar 

  40. Roytburd AL, Zhong S, Alpay SP (2005) Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers. Appl Phys Lett 87:092902

    Article  Google Scholar 

  41. Okatan MB, Misirlioglu IB, Alpay SP (2010) Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Phys Rev B 82:094115

    Article  Google Scholar 

  42. Tsurumi T, Harigai T, Tanaka D, Kakemoto H, Wada S (2004) Anomalous dielectric and optical properties in perovskite-type artificial superlattices. Sci Technol Adv Mater 5:425–429

    Article  Google Scholar 

  43. Tsurumi T, Ichikawa T, Harigai T, Kakemoto H, Wada S (2002) Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices. J Appl Phys 91:2284–2289

    Article  Google Scholar 

  44. Neaton JB, Rabe KM (2003) Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl Phys Lett 82:1586–1588

    Article  Google Scholar 

  45. Aguado-Puente P, García-Fernández P, Junquera J (2011) Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys Rev Lett 107:217601

    Article  Google Scholar 

  46. Zubko P, Jecklin N, Torres-Pardo A, Aguado-Puente P, Gloter A, Lichtensteiger C, Junquera J, Stephan O, Triscone J-M (2012) Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett 12:2846–2851

    Article  Google Scholar 

  47. Misirlioglu IB, Kesim MT, Alpay SP (2014) Layer thickness and period as design parameters to tailor pyroelectric properties in ferroelectric superlattices. Appl Phys Lett 105:172905

    Article  Google Scholar 

  48. Kumar A, Katiyar RS, Premnath RN, Rinaldi C, Scott JF (2009) Strain-induced artificial multiferroicity in Pb(Zr0.53Ti 0.47)O3/Pb(Fe0.66W0.33)O3 layered nanostructure at ambient temperature. J Mater Sci 44:5113–5119. doi:10.1007/s10853-009-3503-y

    Article  Google Scholar 

  49. Tsurumi T, Miyasou T, Ishibashi Y, Ohashi N (1998) Preparation and dielectric property of BaTiO3–SrTiO3 artificially modulated structures. Jpn J Appl Phys 37:5104–5107

    Article  Google Scholar 

  50. Tsurumi T, Suzuki T, Yamane M, Daimon M (1994) Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn J Appl Phys 33:5192–5195

    Article  Google Scholar 

  51. Tsurumi T, Harigai T, Tanaka D, Nam S-M, Kakemoto H, Wada S, Saito K (2004) Artificial ferroelectricity in perovskite superlattices. Appl Phys Lett 85:5016

    Article  Google Scholar 

  52. Neaton JB, Rabe KM (2003) Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl Phys Lett 82:1586–1588

    Article  Google Scholar 

  53. Stephenson GB, Elder KR (2006) Theory for equilibrium 180° stripe domains in PbTiO3 films. J Appl Phys 100:051601

    Article  Google Scholar 

  54. Specht ED, Christen H-M, Norton DP, Boatner LA (1998) X-Ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys Rev Lett 80:4317–4320

    Article  Google Scholar 

  55. Jo JY, Chen P, Sichel RJ, Callori SJ, Sinsheimer J, Dufresne EM, Dawber M, Evans PG (2011) Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys Rev Lett 107:055501

    Article  Google Scholar 

  56. Levy P, Zhang S, Fert A (1990) Electrical conductivity of magnetic multilayered structures. Phys Rev Lett 65:1643–1646

    Article  Google Scholar 

  57. Kesim MT, Cole MW, Zhang J, Misirlioglu IB, Alpay SP (2014) Tailoring dielectric properties of ferroelectric-dielectric multilayers. Appl Phys Lett 104:022901

    Article  Google Scholar 

  58. Haun MJ, Furman E, McKinstry HA, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part II: tricritical behavior. Ferroelectrics 99:27–44

    Article  Google Scholar 

  59. Pertsev NA, Kukhar V, Kohlstedt H, Waser R (2003) Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−x Ti x )O3 thin films. Phys Rev B 67:054107

    Article  Google Scholar 

  60. Pertsev NA, Tagantsev AK, Setter N (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B 61:R825–R829

    Article  Google Scholar 

  61. Hlinka J, Márton P (2006) Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys Rev B 74:104104

    Article  Google Scholar 

  62. Tagantsev AK (2008) Landau expansion for ferroelectrics: which variable to use? Ferroelectrics 375:19–27

    Article  Google Scholar 

  63. Bratkovsky AM, Levanyuk AP (2009) Continuous theory of ferroelectric states in ultrathin films with real electrodes. J Comput Theor Nanos 6:465–489

    Article  Google Scholar 

  64. Stephanovich VA, Luk’yanchuk IA, Karkut MG (2005) Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys Rev Lett 94:047601

    Article  Google Scholar 

  65. Christen H-M, Specht ED, Norton DP, Chisholm MF, Boatner LA (1998) Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures. Appl Phys Lett 72:2535–2537

    Article  Google Scholar 

  66. Levanyuk AP, Misirlioglu IB (2011) Phase transitions in ferroelectric-paraelectric superlattices. J Appl Phys 110:114109

    Article  Google Scholar 

  67. Jain M, Majumder S, Guo R, Bhalla AS, Katiyar RS (2002) Synthesis and characterization of lead strontium titanate thin films by sol–gel technique. Mater Lett 56:692–697

    Article  Google Scholar 

  68. Lee SW, Kwon OS, Han JH, Hwang CS (2008) Enhanced electrical properties of SrTiO3 thin films grown by atomic layer deposition at high temperature for dynamic random access memory applications. Appl Phys Lett 92:222903

    Article  Google Scholar 

  69. Misirlioglu IB, Kesim MT, Alpay SP (2014) Strong dependence of dielectric properties on electrical boundary conditions and interfaces in ferroelectric superlattices. Appl Phys Lett 104:022906

    Article  Google Scholar 

  70. Sakai S, Takahashi M (2010) Recent progress of Ferroelectric-Gate Field-Effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 3:4950–4964

    Article  Google Scholar 

  71. Kandaswamy PK, Guillot F, Bellet-Amalric E, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien FH, Baumann E, Giorgetta FR, Hofstetter D, Remmele T, Albrecht M, Birner S, Dang LS (2008) GaN/AlN short-period superlattices for intersubband optoelectronics: a systematic study of their epitaxial growth, design, and performance. J Appl Phys 104:093501

    Article  Google Scholar 

  72. Dong L, Alpay SP (2012) Role of heteroepitaxial misfit strains on the band offsets of Zn1-xBexO/ZnO quantum wells: a first-principles analysis. J Appl Phys 111:113714

    Article  Google Scholar 

  73. Dong L, Mantese JV, Avrutin V, Ozgur U, Morkoc H, Alpay SP (2013) Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells. J Appl Phys 114:043715

    Article  Google Scholar 

  74. Li YL, Hu SY, Tenne D, Soukiassian A, Schlom DG, Xi XX, Choi KJ, Eom CB, Saxena A, Lookman T, Jia QX, Chen LQ (2007) Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl Phys Lett 91:112914

    Article  Google Scholar 

  75. National Research Council (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. The National Academies Press, Washington, DC

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge many discussions with Dr. J. V. Mantese (United Technologies Research Center, East Hartford, CT—USA). M. T. Kesim is supported by a GE Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Alpay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misirlioglu, I.B., Sen, C., Kesim, M.T. et al. Low-voltage ferroelectric–paraelectric superlattices as gate materials for field-effect transistors. J Mater Sci 51, 487–498 (2016). https://doi.org/10.1007/s10853-015-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9301-9

Keywords

Navigation