Skip to main content

Advertisement

Log in

Colloidal Nanothermite Particles: Advanced Nanocatalyst and Energy Dense Material for Ammonium Perchlorates

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

While ferric oxide is frequently used as a catalyst, aluminum, with combustion enthalpy 32000 J g−1, is a versatile highly energy-dense material. This binary mixture can achieve a synergistic impact with a strong thermite reaction. Additionally, nanoscale particles can offer better interfacial surface area, catalytic effect, and a high heat release rate. This study reports on the facile fabrication of colloidal ferric oxide nanoparticles (Fe2O3 NPs) of 5-nm average size; aluminum nanoplates of 100 nm were employed. Colloidal nanothermites (Fe2O3/Al) were synthesized and integrated into ammonium perchlorate (APC) via co-precipitation. Uniform dispersion of nanothermite particles into APC was confirmed via elemental mapping using an EDAX detector. The nanothermite mixture's potentials (as a catalyst and highly energy-dense material) was described by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Thermite NPs offered a decrease in APC endothermic phase change by 48%, increasing the total heat released by 68%. While APC demonstrated a decomposition enthalpy of 836 J/g, for the APC nanocomposite it was 1405 J/g. Aluminum particles increased decomposition enthalpy, and Fe2O3 NPs acted as an effective catalyst to decrease the required activation energy. The kinetic decomposition study of APC nanocomposite was investigated via isothermal heating using TGA. Nanothermite particles offered a reduction in APC activation energy by 11% and 14% using Kissinger's and Kissinger–Akahira–Sunose (KAS) models, respectively. Herein, this is the first report on catalytic activity assessment of colloidal nanothermite particles on APC decomposition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. J. Conkling, and C. Mocella, Chemistry of Pyrotechnics Basic Principles and Theory (London: CRC, 2012).

    Google Scholar 

  2. S. Elbasuney, M. Gobara, and M. Yehia, J. Inorg. Organomet. Polym. Mater. 29, 721 (2019).

    Article  CAS  Google Scholar 

  3. S. Elbasuney, M. Gobara, M.G. Zaky, M. Radwan, A. Maraden, S. Ismael, E. Elsaka, M.A. Elkodous, and G.S. El-Sayyad, J. Mater. Sci. Mater. Electron. 31, 8212 (2020).

    Article  CAS  Google Scholar 

  4. W.-Q. Pang, L.T. DeLuca, X.-Z. Fan, O.G. Glotov, K. Wang, Z. Qin, and F.-Q. Zhao, Combust. Flam. 220, 157 (2020).

    Article  CAS  Google Scholar 

  5. S. Jain, G. Gupta, D.R. Kshirsagar, V.H. Khire, and B. Kandasubramanian, Def. Technol. 15, 313 (2019).

    Article  Google Scholar 

  6. P.A. Figueiredo, and F.M. Brójo, Energy Proc. 136, 202 (2017).

    Article  CAS  Google Scholar 

  7. R. Meyer, J. Kohler, and A. Homburg, Explosives, 6th ed., (Weinheim: Wiley, 2007).

    Book  Google Scholar 

  8. A. Manash, and P. Kumar, Def. Technol. 15, 227 (2019).

    Article  Google Scholar 

  9. C.A.M. Dillier, E.D. Petersen, and E.L. Petersen, Proc. Combust. Inst. 38, 4409 (2020).

    Article  Google Scholar 

  10. D.-Y. Tang, Z.-M. Fan, G. Yang, Y. Wang, P.-J. Liu, and Q.-L. Yan, Combust. Flam. 219, 33 (2020).

    Article  CAS  Google Scholar 

  11. R. Sangtyani, H.S. Saha, A. Kumar, A. Kumar, M. Gupta, and P.V. Chavan, Combust. Flam. 209, 357 (2019).

    Article  CAS  Google Scholar 

  12. A.S. Budhwar, A. Gautam, P.V. More, C.S. Pant, S. Banerjee, and P.K. Khanna, Vacuum 156, 483 (2018).

    Article  CAS  Google Scholar 

  13. S. Elbasuney, and M. Yehia, Def. Technol. 15, 868 (2019).

    Article  Google Scholar 

  14. S. Elbasuney, and A. Fahd, Fuel 237, 1274 (2019).

    Article  CAS  Google Scholar 

  15. S. Elbasuney, J. Inorg. Organomet. Polym. Mater. 28, 1793 (2018).

    Article  CAS  Google Scholar 

  16. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, R. Sadek, A. Fahd, and M. Gobara, J. Inorg. Organomet. Polym. Mater. 28, 2231 (2018).

    Article  CAS  Google Scholar 

  17. S. Elbasuney, Powder Technol. 268, 158 (2014).

    Article  CAS  Google Scholar 

  18. S. Elbasuney, Particular 22, 66 (2015).

    Article  CAS  Google Scholar 

  19. S. Elbasuney, Powder Technol. 277, 63 (2015).

    Article  CAS  Google Scholar 

  20. J.A. Vara, P.N. Dave, and V.R. Ram, Nano-struct. Nano-obj. 20, 100372 (2019).

    Article  CAS  Google Scholar 

  21. N. Yadav, P.K. Srivastava, and M. Varma, Def. Technol. 2, 3–9 (2020). https://doi.org/10.1016/j.dt.2020.06.007 (in press).

    Article  Google Scholar 

  22. S. Elbasuney, and M. Yehia, J. Inorg. Organomet. Polym. Mater. 30, 706 (2020).

    Article  CAS  Google Scholar 

  23. S. Elbasuney, Appl. Surf. Sci. 409, 438 (2017).

    Article  CAS  Google Scholar 

  24. S. Elbasuney, and M. Yehia, J. Inorg. Organomet. Polym. Mater. 29, 1349 (2019).

    Article  CAS  Google Scholar 

  25. A. Khawam, and D.R. Flanagan, J. Pharm. Sci. 95, 472 (2006).

    Article  CAS  Google Scholar 

  26. D. Trache, A. Abdelaziz, and B. Siouani, J. Therm. Anal. Calorim. 128, 335 (2017).

    Article  CAS  Google Scholar 

  27. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011).

    Article  CAS  Google Scholar 

  28. D. Trache, K. Khimeche, A. Mezroua, and M. Benziane, J. Therm. Anal. Calorim. 124, 1485 (2016).

    Article  CAS  Google Scholar 

  29. S. Elbasuney, A. Hamed, S. Ismael, M. Mokhtar, and M. Gobara, J. Inorg. Organomet. Polym. Mater. 30, 3980 (2020).

    Article  CAS  Google Scholar 

  30. E.L. Dreizin, Prog. Energy Combust. Sci. 35, 141 (2009).

    Article  CAS  Google Scholar 

  31. S. Elbasuney, G.S. El-Sayyad, M. Yehia, and S.K.A. Aal, J. Mater. Sci.: Mater. Electron. 31, 20805 (2020).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt, and the ZEISS microscope team at Cairo, Egypt, for their invaluable support of this study. Figures 1 and 6 were created by BioRender.com.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors approve the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Hamed, A., Yehia, M. et al. Colloidal Nanothermite Particles: Advanced Nanocatalyst and Energy Dense Material for Ammonium Perchlorates. J. Electron. Mater. 50, 6128–6134 (2021). https://doi.org/10.1007/s11664-021-09141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09141-x

Keywords

Navigation