Skip to main content
Log in

Novel Colloidal Nanothermite Particles (MnO2/Al) for Advanced Highly Energetic Systems

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanothermites (metal oxide/metal) are tremendously exothermic and run with self sustaining oxygen content. Manganese oxide is one of the most effective oxidizers for nanothermite applications. This paper reports on the sustainable fabrication of different nanoscopic forms of colloidal manganese oxides including: MnO2 nanoparticles of 20 nm average particle size and Mn2O3 nanorods of 50 nm diameter and 1 µm length. TEM micrographs demonstrated mono-dispersed particles and rods. XRD diffractograms revealed highly crystalline materials. MnO2 nanoparticles (oxygen content 37 wt%) can offer high oxidizing ability compared with Mn2O3 nanorods (oxygen content 30 wt%). The integration of colloidal particles into energetic matrix can offer enhanced dispersion characteristics; consequently stoichiometric binary mixture of MnO2 and Al nanoparticles were re-dispersed in organic solvent. The integration of developed colloidal nanothermite particles into tri-nitro toluene offered enhanced shock wave strength by 35% using ballistic mortar test. Thanks to nanotechnology which offered sustainable manufacture and subsequent integration of one of the most effective nanothermite particles into highly energetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.E. Zarko, A.A. Gromov (eds.), Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  2. J. Conkling, C. Mocella (eds.), Chemistry of Pyrotechnics Basic Principles and Theory, 2nd edn. (CRC, London, 2012)

    Google Scholar 

  3. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  4. P.P. Vadhe et al., Cast aluminized explosives (review). Combust. Explosion Shock Waves 44(4), 461–477 (2008)

    Article  Google Scholar 

  5. D.G. Piercey, T.M. Klapötke, Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials. Central Eur. J. Energ. Mater. 7(2), 15 (2010)

    Google Scholar 

  6. N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012)

    Article  CAS  Google Scholar 

  7. M.L. Chan et al., Castable Thermobaric Explosive Formulations (The United State of America Repredented by The Secretary of The Navy, Washington, DC, 2005) p. 5

    Google Scholar 

  8. T.M. Klapِtke (ed.), Chemistry of High-Energy Materials. 3rd edn. (De Gruyter, Munich, 2015)

    Google Scholar 

  9. W.A. Trzciński, L. Maiz, Thermobaric and enhanced blast explosives—properties and testing methods. Propellants Explos. Pyrotech. 40(5), 632–634 (2015)

    Article  Google Scholar 

  10. H. Sui, S. Atashin, J.Z. Wen, Thermo-chemical and energetic properties of layered nano-thermite composites. Thermochim. Acta 642, 17–24 (2016)

    Article  CAS  Google Scholar 

  11. M. Comet et al., Phosphorus-based nanothermites: a new generation of energetic materials. J. Phys. Chem. Solids 71(2), 64–68 (2010)

    Article  CAS  Google Scholar 

  12. G. Jian et al., Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), 432–437 (2013)

    Article  CAS  Google Scholar 

  13. L. Glavier et al., Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE. Combust. Flame 162(5), 1813–1820 (2015)

    Article  CAS  Google Scholar 

  14. E. Nixon et al., Effect of a superhydrophobic coating on the combustion of aluminium and iron oxide nanothermites. Surf. Coat. Technol. 205(21–22), 5103–5108 (2011)

    Article  CAS  Google Scholar 

  15. E. Collins et al., Comparison of engineered nanocoatings on the combustion of aluminum and copper oxide nanothermites. Surf. Coat. Technol. 215, 476–484 (2013)

    Article  CAS  Google Scholar 

  16. A.K. Mohamed, H.E. Mostafa, S. Elbasuney, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation. J. Hazard. Mater. 301, 492–503 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27(5), 300–306 (2002)

    Article  CAS  Google Scholar 

  18. V.W. Manner et al., The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos. Pyrotech. 37(2), 198–206 (2012)

    Article  CAS  Google Scholar 

  19. X.L. Xing et al., Discussions on thermobaric explosives (TBXs). Propellants Explos. Pyrotech. 39(1), 14–17 2014

    Article  CAS  Google Scholar 

  20. J. Shin et al., Numerical modeling of close-in detonations of high explosives. Eng. Struct. 81, 88–97 (2014)

    Article  Google Scholar 

  21. H.J. Krier, J.M. Peuker, N. Glumac, Aluminum Combustion in Aluminized Explosives: Aerobic and Anaerobic Reaction (49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011)

    Google Scholar 

  22. K.L. McNesby et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010)

    CAS  Google Scholar 

  23. M.B. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explosion Shock Waves 43(1), 62–72 (2007)

    Article  Google Scholar 

  24. A.S. Mukasyan, A.S. Rogachev, S.T. Aruna, Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26(3), 954–976 (2015)

    Article  CAS  Google Scholar 

  25. K. Monogarov et al., Сombustion of micro- and nanothermites under elevating pressure. Phys. Procedia 72, 362–365 (2015)

    Article  CAS  Google Scholar 

  26. B.Q. Lin, et al., Experimental investigation on explosion characteristics of nano-aluminum powder—air mixtures. Combust. Explosion Shock Waves 46(6), 678–682 (2010)

    Article  Google Scholar 

  27. K.M. Dimpe et al., Synthesis, modification, characterization and application of AC@Fe2O3@MnO2 composite for ultrasound assisted dispersive solid phase microextraction of refractory metals in environmental samples. Chem. Eng. J. 308, 169–176 (2017)

    Article  CAS  Google Scholar 

  28. W.-J. Liu, Y.-M. Dai, J.-M. Jehng, Synthesis, characterization and electrochemical properties of Fe/MnO2 nanoparticles prepared by using sol–gel reaction. J. Taiwan Inst. Chem. Eng. 45(2), 475–480 (2014)

    Article  CAS  Google Scholar 

  29. W. Wang et al., Synthesis of MnO2 nanoparticles with different morphologies and application for improving the fire safety of epoxy. Compos. Part A 95, 173–182 (2017)

    Article  CAS  Google Scholar 

  30. Y. Xiong et al., Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors. Appl. Surf. Sci. 357, 1024–1030 (2015)

    Article  CAS  Google Scholar 

  31. A.G.M. da Silva et al., MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Appl. Catal. B 184, 35–43 (2016)

    Article  CAS  Google Scholar 

  32. E. Pargoletti et al., High-performance of bare and Ti-doped α-MnO2 nanoparticles in catalyzing the oxygen reduction reaction. J. Power Sources 325, 116–128 (2016)

    Article  CAS  Google Scholar 

  33. M. Qiao et al., Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloy. Compd. 693, 432–439 (2017)

    Article  CAS  Google Scholar 

  34. D. Moradkhani, M. Malekzadeh, E. Ahmadi, Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods. Trans. Nonferrous Met. Soc. China 23(1), 134–139 (2013)

    Article  CAS  Google Scholar 

  35. L. Kang et al., Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. J. Alloy. Compd. 648, 190–194 (2015)

    Article  CAS  Google Scholar 

  36. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268(0), 158–164 (2014)

    Article  CAS  Google Scholar 

  37. E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)

    Article  CAS  Google Scholar 

  38. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    Article  CAS  Google Scholar 

  39. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    Article  CAS  Google Scholar 

  40. K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    Article  CAS  Google Scholar 

  42. M.A. Elsayed, M. Gobara, S. Elbasuney, Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. J. Photochem. Photobiol. A 344, 121–133 (2017)

    Article  CAS  Google Scholar 

  43. S. Elbasuney, H.E. Mostafa, Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology 22, 82–88 (2015)

    Article  CAS  Google Scholar 

  44. K. Byrappa, M. Yoshimura (eds.), Handbook of Hydrothermal Technology (William Andrew, Norwich, 2001)

    Google Scholar 

  45. J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008)

    Google Scholar 

  46. P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. J. 41(7), 1723–1778 (1995)

    Article  CAS  Google Scholar 

  47. K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    Article  CAS  Google Scholar 

  48. H. Hobbs, Biocatalysis in ‘Green Solvents’, in Chemistry (University of Nottingham, Notttingham, 2006)

    Google Scholar 

  49. J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)

    Article  CAS  Google Scholar 

  51. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J. Am. Ceram. Soc. 75(9), 2615–2618 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Military technical college is acknowledged for funding the research project entitled “Nanoscopic Cast Metalized Explosive Formulations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S. Novel Colloidal Nanothermite Particles (MnO2/Al) for Advanced Highly Energetic Systems. J Inorg Organomet Polym 28, 1793–1800 (2018). https://doi.org/10.1007/s10904-018-0823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0823-x

Keywords

Navigation