Skip to main content

Hydrothermal Method for Synthesis of Materials

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Hydrothermal method of synthesis has emerged as the primary choice for synthesizing several strategic materials. The application of this method has diversified in the last few decades into several advanced fields of material science with the progress in the understanding of the process and with the evolution of better instrumentation. The journey of hydrothermal synthesis started with the preparation of minerals particularly quartz crystals using the temperature gradient method with the emphasis on quality of the product in terms of purity, defects, and size. This method gained immense prominence with the emergence of mesoporous zeolites which act as excellent catalyst for the cracking of petroleum. Hydrothermal synthesis is the most suitable route for the preparation of zeolites and other related mesoporous structures with engineered pores. Detailed studies have been carried out to understand the growth mechanism in the quest of designing the framework with required porosity. Hydrothermal synthesis has emerged as the preferred route for the synthesis of metal oxide nanoparticles. Enhanced dehydration and overall kinetics of the process due to increased temperature result in the formation of the desired product. Designing the hydrothermal synthesis process to tailor the morphology of the product at nanoscale has led to the development of several interesting semiconducting nanoparticles and nano-structured arrays. Variations in the technique like using microwave-assisted hydrothermal method or continuous hydrothermal flow synthesis have helped in further improving the quality of product. The above aspects related to the hydrothermal method of synthesis have been described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabenau A (1985) Angew Chem Int Ed Engl 24:1026

    Article  Google Scholar 

  2. Roy R, Tuttle OF (1956) Phys Chem Earth 1:138

    Article  Google Scholar 

  3. Byrappa K, Keerthiraj N, Byrappa SM (2015) Hydrothermal growth of crystals—design and processing in handbook of crystal growth. Elsevier

    Google Scholar 

  4. Byrappa K, Adschiri T (2007) Progr Cryst Growth Character Mater 53:117

    Article  CAS  Google Scholar 

  5. Morey GW, Niggli P (1913) J Am Chem Soc 35:1086

    Article  CAS  Google Scholar 

  6. Barrer RM (1946) Nature 157:734

    Article  CAS  Google Scholar 

  7. Walker AC (1953) J Am Ceram Soc 36:250

    Article  CAS  Google Scholar 

  8. Helgeson HC, Garrels RM, Mackenzie FT (1969) Geochim Cosmochim Acta 33:455

    Article  CAS  Google Scholar 

  9. Laudise RA, Nielsen JW (1961) Solid State Phys 12:149

    Article  CAS  Google Scholar 

  10. Dove PM, Crerar DA (1990) Geochim Cosmochim Acta 54:955

    Article  CAS  Google Scholar 

  11. Tani E, Yoshimura M, Somiya S (1983) J Am Ceram Soc 66:11

    Article  CAS  Google Scholar 

  12. Dawson W (1988) J Am Ceramic Soc Bull 67:1673

    CAS  Google Scholar 

  13. Ohmoto H, Lasaga AC (1982) Geochim Cosmochim Acta 46:1727

    Article  CAS  Google Scholar 

  14. Li W-J, Shi E-W, Zhong W-Z, Yin Z-W (1999) J Crystal Growth 203:186

    Article  CAS  Google Scholar 

  15. Yaghi OM, Li H (1995) J Am Chem Soc 117:10401

    Article  CAS  Google Scholar 

  16. Liu B, Aydil ES (2009) J Am Chem Soc 131:3985

    Article  CAS  Google Scholar 

  17. Jiang J, Zhao K, Xiao X, Zhang L (2012) J Am Chem Soc 134:4473

    Article  CAS  Google Scholar 

  18. O’Hare D (2001) Hydrothermal synthesis in encyclopedia of materials: science and technology. Elsevier

    Google Scholar 

  19. Buisson X, Arnaud R (1994) J de Physique Colloque 4(C2):25

    CAS  Google Scholar 

  20. Andelman T, Tan MC, Riman RE (2010) Mater Res Innov 14:9

    Article  CAS  Google Scholar 

  21. Rupp B (2015) Acta Cryst F71:247

    Google Scholar 

  22. Kashchiev D (1982) J Chem Phys 76:5098

    Article  CAS  Google Scholar 

  23. Flanigen EM (2001) Stud Surf Sci Catal 137:11

    Article  CAS  Google Scholar 

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  25. Barrer RM, Denny PJ (1961) J Chem Soc 201:971

    Article  Google Scholar 

  26. Wadlinger RL, Kerr GT, Rosinski EJ (1997) U.S. Patent 3,308,069

    Google Scholar 

  27. Flanigen EM, Breck DW (1960) 137th Meet, ACS, Div Inorg Chem 33-M

    Google Scholar 

  28. Guth JL, Caullet P (1986) J Chim Phys 83:155

    Article  CAS  Google Scholar 

  29. Grose RW, Flanigen EM (1981) U.S. Patent 4 257 885

    Google Scholar 

  30. Lowe BM, Nee JRD, Casci JL (1994) Zeolites 14:610

    Article  CAS  Google Scholar 

  31. Flanigen EM, Patton RL (1978) U.S. Patent 4,073,865

    Google Scholar 

  32. Kessler H (1989) Stud Surf Sci Catal 52:17

    Article  Google Scholar 

  33. Daniels RH, Kerr GT, Rollmann LD (1978) J Am Chem Soc 100:3097

    Article  CAS  Google Scholar 

  34. Zhdanov SP (1974) Some problems of zeolite crystallization in molecular sieve zeolites-I. Am Chem Soc

    Google Scholar 

  35. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146

    Article  CAS  Google Scholar 

  36. Férey G (2001) Chem Mater 13:3084

    Google Scholar 

  37. Mueller U, Unger KK (1988) Zeolites 8:154

    Article  CAS  Google Scholar 

  38. Bibby DM, Dale MP (1985) Nature 317:157

    Article  CAS  Google Scholar 

  39. Kuperman A, Nadimi S, Oliver S, Ozin GA, Garces JA, Olken MM (1993) Nature 365:239

    Article  CAS  Google Scholar 

  40. Liu X, Thomas JM (1985) J Chem Soc Chem Commun 1544

    Google Scholar 

  41. Taramasso M, Perego G, Notari B (1983) U.S. Patent 4,410,501

    Google Scholar 

  42. Thompson RW (1998) Molecular sieves. Springer, Berlin

    Google Scholar 

  43. Zhao JP, Cundy CS, Dwyer J (1997) Stud Surf Sci Catal 105:181

    Article  Google Scholar 

  44. Ghobarkar H, Schaf O, Guth U (2001) High-Pressure Res 20:45

    Article  Google Scholar 

  45. Yoshimura M, Byrappa K (2007) J Mater Sci 43:2085

    Article  Google Scholar 

  46. Riman RE, Suchanek WL, Lencka MM (2002) Ann Chim Sci Mat 27:15

    Google Scholar 

  47. Jiao X, Chen D, Xiao L (2003) J Cryst Growth 258:158

    Article  CAS  Google Scholar 

  48. Sun C, Li H, Zhang H, Wang Z, Chen L (2005) Nanotechnology 16:1454

    Article  CAS  Google Scholar 

  49. Byrappa K, LokanathaRai KM, Yoshimura M (2000) Env Tech 21:1085

    Article  CAS  Google Scholar 

  50. Wang G, Wang Z, Zhang Y, Fei G, Zhang L (2004) Nanotechnology 15:1307

    Article  CAS  Google Scholar 

  51. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2002) J Mater Res 17:2410

    Article  CAS  Google Scholar 

  52. Adschiri T, Kanaszawa K, Arai K (1992) J Am Ceram Soc 75:1019

    Article  CAS  Google Scholar 

  53. Sorescu M, Diamandescu L, TarabasanuMihaila D, Teodorescu VS (2004) J Mater Sci 39:675

    Article  CAS  Google Scholar 

  54. Wu M, Xiong Y, Jia Y, Ye J, Zhang K, Chen Q (2005) Appl Phys A 81:1355

    Article  CAS  Google Scholar 

  55. Qian Y, Chen Q, Chen Z, Fan C, Zhou G (1993) J Mater Chem 3:203

    Article  CAS  Google Scholar 

  56. Chen Q, Qian Y, Chen Z, Zhou G, Zhang Y (1995) Mater Lett 22:77

    Article  Google Scholar 

  57. Yang HG, Zeng HC (2004) J Phys Chem B 108:3492

    Article  CAS  Google Scholar 

  58. Liu B, Zeng HC (2005) Small 1:566

    Article  CAS  Google Scholar 

  59. Banfield JF, Welch SA, Zhang HZ, Ebert TT, Penn RL (2000) Science 289:751

    Article  CAS  Google Scholar 

  60. Shi WD, Wang C, Wang HS, Zhang HJ (2006) Cryst Growth Des 6:915

    Article  CAS  Google Scholar 

  61. Yang XH, Li Z, Sun CH, Yang HG, Li CZ (2011) Chem Mater 23:3486

    Article  CAS  Google Scholar 

  62. Zhang J, Lin Z, Lan Y, Ren GQ, Chen DG, Huang F, Hong MC (2006) J Am Chem Soc 128:12981

    Article  CAS  Google Scholar 

  63. Shen GZ, Chen D (2006) J Am Chem Soc 128:11762

    Article  CAS  Google Scholar 

  64. Zhu H, Yang D, Yu G, Zhang H, Jin D, Yao K (2006) J Phys Chem B 110:7631

    Article  CAS  Google Scholar 

  65. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  66. Menzel R, Peiró AM, Durrant JR, Shaffer MSP (2006) Chem Mater 18:6059

    Google Scholar 

  67. Xu AW, Fang YP, You LP, Liu HQ (2003) J Am Chem Soc 125:1494

    Article  CAS  Google Scholar 

  68. Ohgi H, Maeda T, Hosono E, Fujihara S, Imai H (2005) Cryst Growth Des 5:1079

    Article  CAS  Google Scholar 

  69. Ashoka S, Nagaraju G, Tharamani CN, Chandrappa GT (2009) Mater Lett 63:873

    Article  CAS  Google Scholar 

  70. Li SZ, Zhang H, Ji YJ, Yang DR (2004) Nanotechnology 15:1428

    Article  CAS  Google Scholar 

  71. Srinivasan R, Chavillon B, Doussier-Brochard C, Cario L, Paris M, Gautron E, Deniard P, Odobel F, Jobic S (2008) J Mater Chem 18:5647

    Article  CAS  Google Scholar 

  72. Zhang LZ, Ai ZH, Jia FL, Liu L, Hu XL, Yu JC (2006) Chem Eur J 12:4185

    Google Scholar 

  73. Qian HS, Yu SH, Gong JY, Luo LB, Wen LL (2005) Cryst Growth Des 5:935

    Article  CAS  Google Scholar 

  74. Fan H, Zhang YG, Zhang MF, Wang XY, Qian YT (2008) Cryst Growth Des 8:2838

    Article  CAS  Google Scholar 

  75. Yang HQ, Song YZ, Li L, Ma JH, Chen DC, Mai SL, Zhao H (2008) Cryst Growth Des 8:1039

    Article  CAS  Google Scholar 

  76. Hsu YF, Xi YY, Tam KH, Djurišić AB, Luo JM, Ling CC, Cheung CK, Ng AMC, Chan WK, Deng X, Beling CD, Fung S, Cheah KW, Fong PWK, Surya CC (2008) Adv Funct Mater 18:1020

    Google Scholar 

  77. Sun J, Wang W, Yue Q (2016) Materials 9:231

    Article  Google Scholar 

  78. Komarneni S (2003) Curr Sci 85:1730

    CAS  Google Scholar 

  79. Komarneni S, Roy R, Li Q (1992) Mater Res Bull 27:1393

    Article  CAS  Google Scholar 

  80. Wilson GJ, Will GD, Frost RL, Montgomery SA (2002) J Mater Chem 12:1787

    Article  CAS  Google Scholar 

  81. Liu S-F, Abothu IR, Komarneni S (1999) Mater Lett 38:344

    Article  CAS  Google Scholar 

  82. Yu H-P, Zhu Y-J, Lu B-Q (2018) Ceram Int 44:12352

    Article  CAS  Google Scholar 

  83. Zhou Z, Bowland CC, Patterson BA, Malakooti MH, Sodano HA, Appl ACS (2016) Mater Interfaces 8:21446

    Article  CAS  Google Scholar 

  84. Prado-Gonjal J, Molero-Sánchez B, Ávila-Brande D, Morán E, Pérez-Flores JC, Kuhn A, García-Alvarado FJ (2013) Power Sources 232:173

    Article  CAS  Google Scholar 

  85. Cho YS, Burdick VL, Amarakoon VR (1997) J Am Ceram Soc 80:1605

    Article  CAS  Google Scholar 

  86. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, North Carolina

    Google Scholar 

  87. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Chem Soc Rev 27:213

    Article  CAS  Google Scholar 

  88. Nemmaniwar BG, Kalyankar NV, Kadam PL (2013) Orbital Electron J Chem 5:1

    CAS  Google Scholar 

  89. Kappe CO (2013) Chem Soc Rev 42:4977

    Article  CAS  Google Scholar 

  90. Arita T, Moriya K-I, Minami K, Naka T, Adschiri T (2010) Chem Lett 39:961

    Article  CAS  Google Scholar 

  91. Simonet V, Calzavara Y, Hazemann JL, Argoud R, Geaymond O, Raoux D (2002) J Chem Phys 117:2771

    Article  CAS  Google Scholar 

  92. Adschiri T, Hakuta Y, Arai K (2000) Ind Eng Chem Res 39:4901

    Article  CAS  Google Scholar 

  93. Hong S-A, Kim SJ, Chung KY, Chun M-S, Lee BG, Kim JJ (2013) Supercrit Fluids 73:70

    Article  CAS  Google Scholar 

  94. Lester E, Huddle T (2014) Worldwide patent WO2014111703-A2

    Google Scholar 

  95. Gruar RI, Tighe CJ, Darr JA (2013) Ind Eng Chem Res 52:5270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, V.S. (2021). Hydrothermal Method for Synthesis of Materials. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1807-9_5

Download citation

Publish with us

Policies and ethics