Skip to main content
Log in

Reaction Mechanism and Mechanical Properties of the Flip-Chip Sn-3.0Ag-0.5Cu Solder Bump with Cu/Ni-xCu/Ti Underbump Metallization After Various Reflows

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni underbump metallization (UBM) has been widely used as the diffusion barrier between solder and Cu pads. To retard the fast dissolution rate of Ni UBM, Cu was added into Ni thin films. The Ni-Cu UBM can provide extra Cu to the solders to maintain the Cu6Sn5 intermetallic compound (IMC) at the interface, which can thus significantly decrease the Ni dissolution rate. In this study, the Cu content of the sputtered Cu/Ni-xCu/Ti UBM was varied from 0 wt.% to 20 wt.%. Sn-3Ag-0.5Cu solder was reflowed with Cu/Ni-Cu/Ti UBM one, three, and five times. Reflow and cooling conditions altered the morphology of the IMCs formed at the interface. The amount of (Cu,Ni)6Sn5 increased with increasing Cu content in the Ni-Cu film. The Cu concentration of the intermetallic compound was strongly dependent on the composition of the Ni-Cu films. The results of this study suggest that Cu-rich Ni-xCu UBM can be used to suppress interfacial spalling and improve shear strength and pull strength of solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Oppermann, R. Kalicki, S. Anhoeck, C. Kallmayer, M. Klein, R. Aschenbrenner, and H. Reichl, IEEE Trans. Electron. Packag. Manuf. 25, 210 (2002).

    Article  CAS  Google Scholar 

  2. T. Takenaka, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 406, 134 (2005).

    Article  Google Scholar 

  3. Q. Zhang, A. Dasgupta, D. Nelson, and H. Pallavicini, J. Electron. Packag. 127, 415 (2005).

    Article  CAS  Google Scholar 

  4. D. Resnik, J. Kovač, D. Vrtačnik, and S. Amon, Thin Solid Films 516, 7497 (2008).

    Article  CAS  ADS  Google Scholar 

  5. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005).

    Article  Google Scholar 

  6. T. Greggirich, P. Holmes, J.C.B. Lee, and C.C. S Lee, Proceedings of the IPC/Soldertec Second International Conference on Lead-Free Electronics, Paper no. 28 (Amsterdam, Netherlands, June 21–24, 2004).

  7. F.Q. Li, C.Q. Wang, and Y.H. Tian, Mater. Sci. Technol. 24, 744 (2008).

    Article  CAS  Google Scholar 

  8. H.T. Chen, C.Q. Wang, M.Y. Li, and D.W. Tian, Mater. Lett. 60, 1669 (2006).

    Article  CAS  Google Scholar 

  9. H.J. Lin and T.H. Chuang, J. Electron. Mater. 35, 154 (2006).

    Article  CAS  ADS  Google Scholar 

  10. Y.S. Lai, C.W. Lee, Y.T. Chiu, and Y.H. Shao, Proceedings of 56th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2006), pp. 641–645.

    Google Scholar 

  11. A. Sharif and Y.C. Chan, J. Electron. Mater. 35, 1812 (2006).

    Article  CAS  ADS  Google Scholar 

  12. Y.S. Lai, K.M. Chen, C.L. Kao, C.W. Lee, and Y.T. Chiu, Microelectron. Reliab. 47, 1273 (2007).

    Article  CAS  Google Scholar 

  13. T.I. Shih, Y.C. Lin, J.G. Duh, and T. Hsu, J. Electron. Mater. 35, 1773 (2006).

    Article  CAS  ADS  Google Scholar 

  14. S.W. Yoon, V. Kripesh, S.Y.J. Jeffery, and M.K. Iyer, J. Electron. Mater. 33, 1144 (2004).

    Article  CAS  ADS  Google Scholar 

  15. F. Zhang, M. Li, C.C. Chum, and Z.C. Shao, J. Electron. Mater. 32, 123 (2003).

    Article  CAS  ADS  Google Scholar 

  16. D.H. Kim, P. Elenius, and S. Barrett, IEEE Trans. Electron. Packag. Manuf. 25, 84 (2002).

    Article  CAS  Google Scholar 

  17. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  CAS  ADS  Google Scholar 

  18. J.Y. Kim, Y.C. Sohn, and J. Yu, J. Mater. Res. 22, 770 (2007).

    Article  CAS  ADS  Google Scholar 

  19. S.H. Kim, J.Y. Kim, J. Yu, and T.Y. Lee, J. Electron. Mater. 33, 948 (2004).

    Article  CAS  ADS  Google Scholar 

  20. C. Jurenka, J.Y. Kim, M.J. Wolf, G. Engelmann, O. Ehrmann, J. Yu, and H. Reich, Proceedings of 55th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2005), pp. 89–93.

    Google Scholar 

  21. C.Y. Li and J.G. Duh, J. Mater. Res. 20, 3118 (2005).

    Article  CAS  ADS  Google Scholar 

  22. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, J. Mater. Res. 17, 1612 (2002).

    Article  CAS  ADS  Google Scholar 

  23. K. Zeng, V. Vuorinen, and J.K. Kivilahti, Proceedings of 51th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2001), pp. 1384–1392.

    Google Scholar 

  24. W.K. Choi, S.K. Kang, Y.C. Sohn, and D.Y. Shih, Proceedings of 53th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2003), pp. 1190–1196.

    Book  Google Scholar 

  25. W.K. Choi and H.M. Lee, Scr. Mater. 46, 777 (2002).

    Article  CAS  Google Scholar 

  26. S.C. Yang, C.E. Ho, and C.W. Chang, J. Appl. Phys. 101, 4911 (2007).

    Google Scholar 

  27. X. Huang, S.W.R. Lee, M. Li, and W.T. Chen, Proc. InterPACK’03 (Maui, HI, 6–11 July), IPACK2003-35246.

  28. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, J. Electron. Mater. 35, 1017 (2006).

    Article  CAS  ADS  Google Scholar 

  29. F. Song and S.W.R. Lee, Proceedings of 56th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2006), pp. 891–898.

    Book  Google Scholar 

  30. F. Zhang, M. Li, B. Balakrisnan, and W. Chen, J. Electron. Mater. 31, 1256 (2002).

    Article  ADS  Google Scholar 

  31. T. Chen and I. Dutta, J. Electron. Mater. 37, 347 (2008).

    Article  ADS  Google Scholar 

  32. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004).

    Article  CAS  ADS  Google Scholar 

  33. J.W. Kim, J. Joo, D.J. Quesnel, and S.B. Jung, Mater. Sci. Technol. 21, 373 (2005).

    Article  CAS  Google Scholar 

  34. J. Liang, N. Dariavach, and P. Callahan, Solder. Surf. Mt. Technol. 19, 4 (2007).

    Article  Google Scholar 

  35. S. Kumamoto, H. Sakurai, Y. Kukimoto, and K. Suganuma, J. Electron. Mater. 37, 806 (2008).

    Article  CAS  ADS  Google Scholar 

  36. F. Song, S.W.R. Lee, K. Newman, B. Sykes, and S. Clark, Proceedings of 57th Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2007), pp. 364–372.

    Book  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Science Council, Taiwan, under Contract NSC-97-2811-E-007-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenq-Gong Duh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, CN., Duh, JG. Reaction Mechanism and Mechanical Properties of the Flip-Chip Sn-3.0Ag-0.5Cu Solder Bump with Cu/Ni-xCu/Ti Underbump Metallization After Various Reflows. J. Electron. Mater. 38, 2543–2553 (2009). https://doi.org/10.1007/s11664-009-0943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0943-8

Keywords

Navigation