Skip to main content
Log in

Effect of Ag and Cu Concentrations on the Creep Behavior of Sn-Based Solders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The creep behavior of Sn-1Ag-0.5Cu, Sn-2.5Ag-1Cu and Sn-4Ag-0.5Cu ball grid array (BGA) solder balls and 99.99% pure polycrystalline bulk Sn was studied using impression creep and related to the microstructure. Sn-Ag-Cu solders generally consist of primary dendrites/grains of β-Sn, and a eutectic microconstituent comprising fine Ag3Sn and Cu6Sn5 particles in β phase. With increasing concentrations of Ag and Cu in the alloy, the proportion of the eutectic microconstituent in relation to the primary β phase increases. In pure Sn and Sn-1Ag-0.5Cu, the β grains form the continuous matrix, whereas in Sn-2.5Ag-1Cu and Sn-4Ag-0.5Cu, the eutectic microconstituent forms a continuous network around the β grains, which form isolated islands within the eutectic. The steady-state creep behavior of the alloys was dominated by the response of the continuous microstructural constituent (β-Sn or solid solution β for pure Sn and Sn-1Ag-0.5Cu, and the eutectic microconstituent for Sn-2.5Ag-0.5Cu and Sn-4Ag-0.5Cu). In general, the steady-state creep rate decreased with increasing alloy content, and in particular, the volume fraction of Ag3Sn and Cu6Sn5 precipitates. The rate-limiting creep mechanism in all the materials investigated here was core diffusion controlled dislocation climb. However, subtle changes in the stress exponent n and activation energy Q were observed. Pure Sn shows n = 5, Q = 42 kJ/mol, Sn-1Ag-0.5Cu shows n = 5, Q = 61 kJ/mol, whereas both Sn-2.5Ag-1Cu and Sn-4Ag-0.5Cu show n = 6 and Q = 61 kJ/mol. Rationalizations for the observed changes of n and Q are provided, based on the influence of the microstructure and the solute concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kung, A. Sarkhel, JOM 23, 701 (1994).

    Google Scholar 

  2. P.T. Vianco, D.R. Frear, JOM 7, 14 (1993).

    Google Scholar 

  3. Y. Kariya, W.J. Plumbridge, Proceedings, 7th Symposium on Microjoining and Assembly Technology in Electronics, Feb. 1–2, 2001, Yokohama, Japan, 383 (2001).

  4. H.G. Song, J.W. Morris, F. Hua, Mater. Trans. 43, 184 (2002).

    Google Scholar 

  5. A. Schubert, H. Walter, R. Dudek, B. Michel, G. Lefranc, J.␣Otto, G. Mitic, Proceedings, 2001 International Symposium on Advanced Packaging Materials, 129 (2001).

  6. K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng., A 333, 106 (2002).

    Article  Google Scholar 

  7. Z. Gao, Y.H. Pao, H. Conrad, J. Electron. Packag. 117, 100 (1995).

    Google Scholar 

  8. R.W. Neu, D.T. Scott, M.W. Woodmansee, J. Electron. Packag. 123, 238 (2001).

    Article  CAS  Google Scholar 

  9. Q. Xiao, W.D. Armstrong, J. Electron. Mater. 34, 196 (2005).

    Article  CAS  Google Scholar 

  10. M Kerr, N. Chawla, Acta Mater. 52, 4527 (2004).

    Article  CAS  Google Scholar 

  11. D. Pan, S. Jadhav, R. Mahajan, I. Dutta, Microstructural effects on the creep behavior of Sn4A0.5Cu microelectronic solder balls, unpublished research.

  12. O.A. Anastasio (M.S. thesis, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA, 2002).

  13. P.T. Vianco, J.A. Rejent, A.C. Kilgo, J. Electron. Mater. 32, 142 (2003).

    Article  CAS  Google Scholar 

  14. D. Pan, R.A. Marks, I. Dutta, S.G. Jadhav, Rev. Sci. Instrum. 75, 5244 (2004).

    Article  CAS  Google Scholar 

  15. I. Dutta, C. Park, S. Choi, Mater. Sci. Eng., A 379, 401 (2004).

    Article  CAS  Google Scholar 

  16. J.C.M. Li, Mater. Sci. Eng., A 322, 23 (2002).

    Article  Google Scholar 

  17. F. Yang, J.C.M. Li, C.W. Shih, Mater. Sci. Eng., A 201, 50 (1995).

    Article  Google Scholar 

  18. D. Dorner, K. Roller, B. Skotzki, B. Stockhert, G. Eggeler, Mater. Sci. Eng., A 357, 346 (2003).

    Article  CAS  Google Scholar 

  19. D. Pan, I. Dutta, S.G. Jadhav, G.F. Raiser, S. Ma, J. Electron. Mater. 34, 1040 (2005).

    Article  CAS  Google Scholar 

  20. I. Dutta, D. Pan, R.A. Marks, S.G. Jadhav, Mater. Sci. Eng., A 410–411C, 48, (2005).

    Google Scholar 

  21. D. Pan, I. Dutta, Mater. Sci. Eng., A 379, 155 (2004).

    Google Scholar 

  22. C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, J. Mater. Sci. 42, 5182 (2007).

    Article  CAS  Google Scholar 

  23. E.C. Yu, J.C.M. Li, Philos. Mag. 36, 811 (1977).

    Article  CAS  Google Scholar 

  24. S.N.G. Chu, J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  CAS  Google Scholar 

  25. H.Y. Yu, M.A. Imam, B.B. Rath, J. Mater. Sci. 20, 636 (1985).

    Article  Google Scholar 

  26. F.H. Huang, H.B. Huntington, Phys. Rev. B 9, 1479 (1974).

    Article  CAS  Google Scholar 

  27. C. Coston, N.H. Nachtrieb, J. Phys. Chem. 68, 2219 (1964).

    Article  Google Scholar 

  28. M.L. Huang, L. Wang, C.M.L. Wu, J. Mater. Res. 17, 2897 (2002).

    Article  CAS  Google Scholar 

  29. P. Adeva, G. Caruana, O.A. Ruano, M. Torralba, Mater. Sci. Eng., A 194, 17 (1995).

    Article  Google Scholar 

  30. T. Reinikainen, J. Kivilahti, Metall. Mater. Trans. 30A, 123 (1999).

    Article  CAS  Google Scholar 

  31. J.E. Breen, J. Weertman, J. Metals 72, 1230 (1955).

    Google Scholar 

  32. R.E. Frenkel, O.D. Sherby, J.E. Dorn, Acta Metall. 3, 470 (1955).

    Article  CAS  Google Scholar 

  33. S.H. Suh, J.B. Cohen, J. Weertman, Metall. Trans. A 14, 117 (1983).

    CAS  Google Scholar 

  34. L. Snugovsky, C. Cermignani, D.D. Perovic, J.W. Rutter, J. Electron. Mater. 33, 1313 (2004).

    Article  CAS  Google Scholar 

  35. O.D. Sherby, J. Weertman, Acta Metall. 27, 387 (1979).

    Article  CAS  Google Scholar 

  36. V.I. Igoshev, J.I. Kleiman, J. Electron. Mater. 29, 244 (2000).

    Article  CAS  Google Scholar 

  37. R. Darveaux, IEEE Trans. Comp., Hybr. Manufact. Technol. 15, 1013 (1992).

    Article  CAS  Google Scholar 

  38. F. Ochoa, X. Deng, N. Chawla, J. Electron. Mater. 33, 1596 (2004).

    Article  CAS  Google Scholar 

  39. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005).

    Article  Google Scholar 

  40. M.E. Kassner, M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys (Amsterdam: Elsevier, 2004), pp. 11–88.

    Google Scholar 

  41. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Oxford: Pergamon, 1982), p. 12.

    Google Scholar 

  42. J. Weertman, Trans. Q., ASM 61, 680 (1968).

    Google Scholar 

  43. J. Weertman, J. Appl. Phys. 26, 1213 (1955).

    Article  CAS  Google Scholar 

  44. C.R. Barrett, W.D. Nix, Acta Metall. 12, 1247 (1965).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grant DMR-0209464 and SRC Contract 2006-NJ-1394. The authors are grateful to S. Jadhav of INTEL for supplying the BGA samples with varying compositions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Dutta, I. Effect of Ag and Cu Concentrations on the Creep Behavior of Sn-Based Solders. J. Electron. Mater. 37, 347–354 (2008). https://doi.org/10.1007/s11664-007-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0340-0

Keywords

Navigation