Skip to main content
Log in

Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1−x,Agx)6Sn5, (Cu1−y,Agy)3Sn, and (Ag1−z,Cuz)3Sn were observed. In addition to conventional I–V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Miller, IBM J. Res. Dev. 13, 239 (1969).

    Article  CAS  Google Scholar 

  2. K.S. Bae and S.J. Kim, J. Mater. Res. 17, 743 (2002).

    CAS  Google Scholar 

  3. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zang, JOM 53, 28 (2001).

    CAS  Google Scholar 

  4. B.L. Young, J.G. Duh, and B.S. Chiou, J. Electron. Mater. 30, 543 (2001).

    CAS  Google Scholar 

  5. M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, Appl. Phys. Lett. 63, 15 (1993).

    Article  CAS  Google Scholar 

  6. J.W. Jang, A.P. De Silva, J.K. Lin, and D.R. Frear, J. Mater. Res. 19, 1826 (2004).

    Article  CAS  Google Scholar 

  7. H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).

    Article  CAS  Google Scholar 

  8. J.H.L. Pang, T.H. Low, B.S. Xiong, L.H. Xu, and C.C. Neo, Thin Solid Films 370, 462 (2004).

    Google Scholar 

  9. J.H.L. Pang, T.H. Low, B.S. Xiong, and F.X. Che, Proc. IEEE, 2003 Electronics Packaging Technology Conf. (Piscataway, NJ: IEEE, 2003), pp. 470–478.

    Book  Google Scholar 

  10. F.A. Stam and E. Davitt, Microelectron. Reliab. 41, 1815 (2001).

    Article  Google Scholar 

  11. S.K. Kang, R.S. Rai, and S. Purrshothaman, J. Electron. Mater. 25, 1113 (1996).

    CAS  Google Scholar 

  12. B.L. Young and J.G. Duh, J. Electron. Mater. 30, 878 (2001).

    CAS  Google Scholar 

  13. C.S. Huang, J.H. Yeh, B.L. Young, and J.G. Duh, J. Electron. Mater. 31, 1230 (2002).

    CAS  Google Scholar 

  14. J.W. Nah and K.W. Paik, IEEE Trans. Compon. Packaging Technol. 25, 32 (2002).

    Article  CAS  Google Scholar 

  15. J.H. Lee, J.W. Park, D.H. Shin, and Y.S. Kim, J. Electron. Mater. 33, 28 (2004).

    CAS  Google Scholar 

  16. G.Y. Jang and J.G. Duh, J. Electron. Mater. 34, 68 (2005).

    Article  CAS  Google Scholar 

  17. Y.C. Lin, J.G. Duh, and B.S. Chiou, J. Electron. Mater. 35, 7 (2006).

    Article  CAS  Google Scholar 

  18. J.I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum Press, 1992), pp. 306–330.

    Google Scholar 

  19. G.K. Reeves and H.B. Harrison, IEEE Electron Dev. Lett. EDL-3, 111 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, T.I., Lin, Y.C., Duh, J.G. et al. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests. J. Electron. Mater. 35, 1773–1780 (2006). https://doi.org/10.1007/s11664-006-0156-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0156-3

Key words

Navigation