Skip to main content
Log in

Effects of Mn Content on the Formation of Inclusions in High Aluminum Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three groups smelting experiments of high Al steel with low, medium and high Mn content were carried out, and the inclusion characteristics in steel samples was observed by field emission scanning electron microscopy with energy dispersive spectrometer and automatic inclusion statistical analysis system. The results show that the oxides inclusion changes from only Al2O3 in low Mn steel to MnO and a little Al2O3 in medium and high Mn steels, and the nitrides inclusion changes from only AlN in low and medium Mn steels to AlN and TiN in high Mn steel. FactSage 8.2 thermodynamic software calculations show that Mn element plays a important role in expanding the FCC phase zone and reducing the high temperature BCC phase zone, that results in the solidification route of medium and high Mn steels does not cross through BCC phase zone and the reduce of the liquidus and solidus temperature. The increasing of Mn content further promote the precipitation of AlN, MnS and TiN inclusions, especially TiN can only precipitate at high Mn content. At last, the changes in the mass fraction of various inclusions in experimental steels from 1600 °C to the solidus temperature were quantitatively calculated and the results show that the mass fraction of Al2O3 decreased with the increasing of Mn, while the mass fraction of MnO, AlN, MnS and TiN increased with the increasing content of Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.J. Gibbs, E.D. Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–3702.

    Article  Google Scholar 

  2. G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  CAS  Google Scholar 

  3. D. Tang and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 580–85.

    Article  Google Scholar 

  4. Y.N. Wang, J. Yang, R.Z. Wang, X.L. Xin, and L.Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1697–1712.

    Article  Google Scholar 

  5. J. Yang, Y.N. Wang, X.M. Ruan, R.Z. Wang, K. Zhu, Z.J. Fan, Y.C. Wang, C.B. Li, and X.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1365–75.

    Article  Google Scholar 

  6. J.W. Cho, S. Yoo, M.S. Park, J.K. Park, and K.H. Moon: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 187–96.

    Article  Google Scholar 

  7. D.Z. Li, Y.H. Wei, B.S. Xu, L.F. Hou, and P.D. Han: Ironmak. Steelmak., 2011, vol. 38, pp. 540–45.

    Article  CAS  Google Scholar 

  8. H. Yu, D. Yang, J. Zhang, G. Qiu, and N. Zhang: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 256–62.

    Article  CAS  Google Scholar 

  9. J.H. Park, D.J. Kim, and D.J. Min: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2316–24.

    Article  CAS  Google Scholar 

  10. X.L. Xin, J. Yang, Y.N. Wang, R.Z. Wang, W.L. Wang, H.G. Zheng, and H.T. Hu: Ironmak. Steelmak., 2016, vol. 43, pp. 234–42.

    Article  CAS  Google Scholar 

  11. W. Wang, H. Zhu, Y. Han, J. Li, and Z. Xue: Ironmak. Steelmak., 2021, vol. 48, pp. 1038–47.

    Article  CAS  Google Scholar 

  12. M. Alba, M. Nabeel, and N. Dogan: Ironmak. Steelmak., 2021, vol. 48, pp. 379–86.

    Article  CAS  Google Scholar 

  13. M.K. Paek, J.M. Jang, M. Jiang, and J.J. Pak: ISIJ Int., 2013, vol. 53, pp. 973–78.

    Article  CAS  Google Scholar 

  14. Y.D. Wu, G.H. Zhang, and K.C. Chou: ISIJ Int., 2017, vol. 57, pp. 630–33.

    Article  CAS  Google Scholar 

  15. M. Alba, M. Nabeel, and N. Dogan: Steel Res. Int., 2020, vol. 91, p. 1900477.

    Article  CAS  Google Scholar 

  16. M. Nabeel, M. Alba, A. Karasev, P.G. Jonsson, and N. Dogan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1674–85.

    Article  Google Scholar 

  17. D. Liu, Z. Xue, and S. Song: Steel Res. Int., 2023, vol. 94, p. 2200551.

    Article  CAS  Google Scholar 

  18. M.K. Paek, J.M. Jang, H.J. Kang, and J.J. Pak: ISIJ Int., 2013, vol. 53, pp. 535–37.

    Article  CAS  Google Scholar 

  19. X. Huang: Iron and Steel Metallurgy Principle, 4th ed. Metallurgical Industry Press, Beijing, 2016, p. 181.

    Google Scholar 

  20. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

  21. H. Itoh, M. Hino, and S. Banya: Tetsu-to-Hagane, 1997, vol. 83, pp. 773–78.

    Article  CAS  Google Scholar 

  22. D. Kim, M. Jung, H. Nam, M. Paek, and J. Paek: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1106–12.

    Article  Google Scholar 

  23. T. Zhang, Y. Li, H. Mu, C. Liu, and M. Jiang: Metall. Res. Technol., 2017, vol. 114, pp. 306–13.

    Article  CAS  Google Scholar 

  24. J.M. Jang, M.K. Paek, and J.J. Pak: ISIJ Int., 2017, vol. 57, pp. 1821–30.

    Article  CAS  Google Scholar 

  25. M.K. Paek, J.J. Jang, K.H. Do, and J.J. Pak: Met. Mater. Int., 2013, vol. 19, pp. 1077–81.

    Article  CAS  Google Scholar 

  26. H. Wada and R.D. Pehlke: Metall. Trans. B, 1978, vol. 9B, pp. 441–48.

    Article  CAS  Google Scholar 

  27. W.Y. Kim, C.O. Lee, C.W. Yun, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 1668–72.

    Article  CAS  Google Scholar 

  28. K.H. Do, J.M. Jang, H.S. Son, M.K. Paek, and J.J. Pak: ISIJ Int., 2018, vol. 58, pp. 1437–42.

    Article  CAS  Google Scholar 

  29. M.K. Paek, H.S. Son, J.M. Jang, and J.J. Pak: ISIJ Int., 2020, vol. 60, pp. 640–48.

    Article  CAS  Google Scholar 

  30. J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, and D.S. Kim: ISIJ Int., 2007, vol. 47, pp. 16–24.

    Article  CAS  Google Scholar 

  31. W.Y. Kim, J.O. Jo, T.I. Chung, D.S. Kim, and J.J. Pak: ISIJ Int., 2007, vol. 47, pp. 1082–89.

    Article  CAS  Google Scholar 

  32. J.M. Jang, S.H. Seo, J.S. Han, D.S. Kim, Y.B. Kang, and J.J. Pak: ISIJ Int., 2015, vol. 55, pp. 2318–24.

    Article  CAS  Google Scholar 

  33. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.

    Article  CAS  Google Scholar 

  34. H.B. Liu, J.H. Liu, S.K. Michelic, S.B. Shen, X.F. Su, B.W. Wu, and H. Ding: Steel Res. Int., 2016, vol. 87, pp. 1723–32.

    Article  CAS  Google Scholar 

  35. T.W. Clyne and W. Kurz: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  36. W. Yamada, T. Matsumiya, and A. Ito: Proc. 6th Int. Iron and Steel Congress, ISIJ, Tokyo, 1990, pp. 618.

  37. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  38. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Trans. B, 1986, vol. 17B, pp. 845–59.

    Article  CAS  Google Scholar 

  39. Z. Xue, N. Li, L. Wang, S. Song, D. Liu, and A. Huang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3860–74.

    Article  Google Scholar 

  40. L. Cao, G. Wang, Y. Xiao, and R. Yang: J. Iron Steel Res. Int., 2022, vol. 29, pp. 925–38.

    Article  CAS  Google Scholar 

  41. Q. Tian, G. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149–64.

    Article  Google Scholar 

  42. S. Ji, L. Zhang, and X. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 848–63.

    Article  Google Scholar 

  43. Y. Guo, L. Cao, G. Wang, and C. Liu: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 275–86.

    Article  Google Scholar 

  44. Z.Y. He, H.B. Li, H.C. Zhu, Y. Wang, Z.W. Ni, Z.H. Jiang, H. Feng, and S.C. Zhang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 213–20.

    Article  Google Scholar 

  45. Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1378–89.

    Article  Google Scholar 

  46. L. Cao, D.L. Shang, X.G. Ai, P.L. Jin, Y.Y. Xiao, G.C. Wang, and C.W. Liu: J. Iron Steel Res. Int., 2021, vol. 28, pp. 402–12.

    Article  CAS  Google Scholar 

  47. J. Yang, Y.N. Wang, X.M. Ruan, R.Z. Wang, K. Zhu, Z.J. Fan, Y.C. Wang, C.B. Li, and X.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1353–64.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Grant No. 52174318) and the Scientific Research Foundation of the Educational Department of Liaoning Province (Grant No. LJKMZ20220663).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Han, L., Wang, G. et al. Effects of Mn Content on the Formation of Inclusions in High Aluminum Steel. Metall Mater Trans B 54, 2680–2693 (2023). https://doi.org/10.1007/s11663-023-02866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02866-6

Navigation