Skip to main content
Log in

Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An innovative continuous casting process named POCAST (POSCO’s advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.C. De Cooman, O. Kwon, and K.-G. Chin: Mater. Sci. Technol., 2012, vol. 28, no. 5, pp. 513–27.

    Article  Google Scholar 

  2. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: AISTech 2011, Indianapolis, IN, 2011.

    Google Scholar 

  3. X. Yu, G.-H. Wen, P. Tang, and B. Yang: J. Iron Steel Res. Int., 2010, vol. 17, no. 5, pp. 11–16.

    Article  Google Scholar 

  4. H. Todoroki, T. Ishii, K. Mizuno, and A. Hongo: Mater. Sci. Eng. A, 2005, vols. 413, 414, pp. 121–28.

    Article  Google Scholar 

  5. Y. Kanbe, T. Ishii, H. Todoroki, and K. Mizuno: Int. J. Cast. Metal. Res., 2009, vol. 22, pp. 143–46.

    Article  Google Scholar 

  6. Z. Zhang, G.-H. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, no. 6, pp. 739–46.

    Article  Google Scholar 

  7. J. Liao, Y. Zhang, S. Sridhar, X. Wang, and Z. Zhang: ISIJ Int., 2012, vol. 52, no. 5, pp. 753–78.

    Article  Google Scholar 

  8. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, no. 1, pp. 1–8.

    Article  Google Scholar 

  9. H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 324–30.

    Article  Google Scholar 

  10. W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66–74.

    Article  Google Scholar 

  11. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: ECCC-METEC, Dusseldorf, June 2011.

  12. J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J.H. Park, and S.-W. Moon: ISIJ Int., 2013, vol. 53, no. 1, pp. 62–70.

    Article  Google Scholar 

  13. Y.G. Kim, T.W. Kim, and S.B. Hong: Proc. of ISATA, 1993, Aachen, Germany, p. 269.

  14. G. Kim, S-K. Kim, S.C. Kang, and I.R. Sohn: CAMP-ISIJ, 2008, vol. 21, p. 593.

    Google Scholar 

  15. K. Nakajima, S. Hiraki, T. Kanazawa, and T. Murakami: CAMP-ISIJ, 1992, vol. 5, p. 1221.

    Google Scholar 

  16. M. Hanao, M. Kawamoto, and A. Yamanaka: ISIJ Int., 2009, vol. 49, no. 3, pp. 365–74.

    Article  Google Scholar 

  17. J.K. Brimacombe and K. Sorimachi: Metall. Trans. B, 1977, vol. 8B, pp. 489–505.

    Article  Google Scholar 

  18. A. Grill and J.K. Brimacombe: Ironmaking Steelmaking, 1976, vol. 3, no. 2, pp. 76–79.

    Google Scholar 

  19. N. Pradhan, M. Ghosh, D.S. Basu, and S. Mazumdar: ISIJ Int., 1999, vol. 39, no. 8, pp. 804–08.

    Article  Google Scholar 

  20. B. Zhao, S.P. Vanka, and B.G. Thomas: Int. J. Heat Fluid Flow, 2005, vol. 26, no. 1, pp. 105–18.

    Article  Google Scholar 

  21. J.-W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, no. 3, pp. 268–75.

    Article  Google Scholar 

  22. Y. Shiraishi: Handbook of Physico-chemical Properties at High Temperatures, ISIJ, Tokyo, Japan, 1988.

    Google Scholar 

  23. J.-W. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38, no. 8, pp. 834–42.

    Article  Google Scholar 

  24. W. Wang, K. Gu, L. Zhou, F. Ma, I. Sohn, D. Min, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2011, vol. 51, no. 11, pp. 1838–45.

    Article  Google Scholar 

  25. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, no. 4, pp. 446–53.

    Article  Google Scholar 

  26. M. Susa, K. Nagata, and K. C. Mills: Ironmaking Steelmaking, 1993, vol. 20, no. 5, pp. 312–18.

    Google Scholar 

  27. M. Susa, A. Kushimoto, H. Toyota, M. Hayashi, R. Endo, and Y. Kobayashi: ISIJ Int., 2009, vol. 49, no. 11, pp. 1722–29.

    Article  Google Scholar 

  28. A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, no. 10, pp. 1084–93.

    Article  Google Scholar 

  29. J. Diao, B. Xie, J. Xiao, and C. Ji: ISIJ Int., 2009, vol. 49, no. 11, pp. 1710–14.

    Article  Google Scholar 

  30. K.C. Mills: Slag Atlas, VDEh, 1995.

  31. K.C. Mills and A.B. Fox: ISIJ Int., 2003, vol. 43, no. 10, pp. 1479–86.

    Article  Google Scholar 

  32. K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada, and M. Komatsu: Tetsu-to-Hagane, 1998, vol. 84, no. 9, pp. 617–24.

    Google Scholar 

  33. K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, no. 2, pp. 226–33.

    Article  Google Scholar 

  34. K.-W. Yi, Y.-T. Kim, and D.-Y. Kim: Metall. Mater. Int., 2007, vol. 13, no. 3, pp. 223–27.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as an internal research project of POSCO Ltd. The authors sincerely thank POSCO for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Wook Cho or Joong-Kil Park.

Additional information

Manuscript submitted July 25, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JW., Yoo, S., Park, MS. et al. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology. Metall Mater Trans B 48, 187–196 (2017). https://doi.org/10.1007/s11663-016-0818-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0818-3

Keywords

Navigation