Skip to main content
Log in

Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel

  • Symposium: Austenite Formation and Decomposition IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Manganese enrichment of austenite during prolonged intercritical annealing was used to produce a family of transformation-induced plasticity (TRIP) steels with varying retained austenite contents. Cold-rolled 0.1C-7.1Mn steel was annealed at incremental temperatures between 848 K and 948 K (575 °C and 675 °C) for 1 week to enrich austenite in manganese. The resulting microstructures are comprised of varying fractions of intercritical ferrite, martensite, and retained austenite. Tensile behavior is dependent on annealing temperature and ranged from a low strain-hardening “flat” curve to high strength and ductility conditions that display positive strain hardening over a range of strain levels. The mechanical stability of austenite was measured using in-situ neutron diffraction and was shown to depend significantly on annealing temperature. Variations in austenite stability between annealing conditions help explain the observed strain hardening behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. THERMO-CALC is a trademark of Thermo-Calc, Stockholm.

References

  1. “Advanced High Strength Steel Application Guidelines,” International Iron and Steel Institute, Committee on Automotive Applications, Middletown, OH, www.worldautosteel.org

  2. E. De Moor, P.J. Gibbs, J.G. Speer, J.G. Schroth, and D.K. Matlock: Iron Steel Technol., 2010, Nov., pp. 1–11.

  3. D.K. Matlock and J.G. Speer: Proc. 3rd Int. Conf. on New Developments in Advanced High-Strength Steels. H.C. Lee, ed., Korean Institute of Metals and Materials, Seoul, 2006, pp. 774–81.

  4. D.K. Matlock and J.G. Speer: Proc. Microstructure and Texture in Steels and Other Materials, A. Haldar, S. Suwas, and B. Bhattacharjee, eds., Springer, London, 2009, pp. 185–205.

  5. D.K. Matlock, P.J. Gibbs, J.G. Speer, R.H. Wagoner, and J.G. Schroth: Proc. NSF CMMI Research and Innovation Conf., NSF, Washington DC, 2009, paper for Grant No. 0729114.

  6. E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin: Scripta Metall., 2010, vol. 64, pp. 185–88.

    Article  Google Scholar 

  7. THERMO-CALC Tcw5.0.2.30, Computer Software, Thermo-Calc Software AB, PC, Stockholm, Sweden, 2009.

  8. B. Lee and B. Sundman: THERMO-CALC Steels Database V2, Scientific Group Thermodata Europe, Stockholm, Sweden, 1999.

  9. R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.

    Article  CAS  Google Scholar 

  10. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10 (7), pp. 621–26.

    CAS  Google Scholar 

  11. M.J. Merwin: SAE Technical Paper No. 2007-01-0336, SAE, Warrendale, PA, 2007.

  12. M.J. Merwin: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4327–32.

    Article  Google Scholar 

  13. M.J. Merwin: Proc. MS&T 2007, Detroit, MI, Sept. 16–20, 2007, pp. 515–36.

  14. T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10 (11), pp. 964–69.

    CAS  Google Scholar 

  15. D. Shu, S. Park, C. Lee, and S. Kim: Metall. Mater. Trans. A, 2008, vol. 40A, pp. 264–68.

    Google Scholar 

  16. S. Kim: Mater. Sci. Forum, 2010, vols. 638–642, pp. 3313–18.

    Article  Google Scholar 

  17. S.W. Lee, K.Y. Lee, and B.C. De Cooman: Mater. Sci. Forum, Jun. 2010, vols. 654–656, pp. 286–89.

    Article  Google Scholar 

  18. B.C. De Cooman, S Lee, and S.S. Kumar: Proc. 2nd Int. Conf. on Super-High Strength Steels, Associacione Italiana di Metalluricia, Verona, Italy, Oct. 17–20, 2010.

  19. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  20. J. Burke: Kinetics of Phase Transformations in Metals, 1st ed., Pergamon Press, Oxford, United Kingdom, 1965, pp. 51–52.

    Google Scholar 

  21. O. Matsumura, Y. Sakuma, and H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06.

    Article  CAS  Google Scholar 

  22. L. Samek, E. De Moor, J. Penning, and B.C. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–24.

    Article  CAS  Google Scholar 

  23. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2568–95.

    Google Scholar 

  24. 2008 Annual Book of ASTM Standards, vol. 03.01, Metals-Mechanical Testing; Elevated and Low Temperature Testing; Metallography, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E-8/E 8M–08, ASTM, Philadelphia, PA, pp. 64–88.

  25. M. Bourke, D.C. Dunand, and E. Ustundag: Appl. Phys. A: Mater. Sci. Proc., 2002, vol. 74, pp. S1707–S1709.

    Article  CAS  Google Scholar 

  26. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  27. A.C. Larson and R.B. Von Dreele: “GSAS. General Structure Analysis System,” Report No. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, 1986.

  28. B. Jaoult: J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  29. C. Crussard: Rev. Metall. (Paris), 1953, vol. 10, pp. 697–710.

    Google Scholar 

  30. D.K. Matlock, G. Krauss, and F. Zia Ebrahimi: in Deformation, Processing, and Structure, G. Krauss ed., ASM, Metals Park, OH, 1984, pp. 47 and 87.

  31. W.B. Morrison and R.L. Miller: Proc. Ultrafine-Grain Metals, J.J. Burke, ed., Syracuse, NY, 1970, pp. 183–211.

  32. D.K. Matlock, G. Krauss, L.F. Ramos, and G.S. Huppi: in Structure and Properties of Dual Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 62 and 90.

  33. H. Han, C. Oh, G. Kim, and O. Kwon: Mater. Sci. Eng. A, 2009, vol. 499, pp. 462–68.

    Article  Google Scholar 

  34. T. Nakamura and K. Wakasa: Tetsu-to-Hagané, 1975, vol. 61, p. 69.

    Google Scholar 

  35. D.C. Ludwigson and J.A. Burger: J. Iron Steel Inst., 1969, vol. 192, p. 63.

    Google Scholar 

  36. T. Angel: J. Iron Steel Inst., 1954, vol. 177, p. 165.

    CAS  Google Scholar 

  37. H. Schumann: Arch. Eisenhüttenwes, 1967, vol. 38 (8), pp. 647–56.

    CAS  Google Scholar 

  38. Q. Gu, J. Van Humbeeck, and L. Delaey: J. de Phys. IV, 1994, pp. C3-135–C3-144.

  39. S.-J. Lee, S. Lee, and B.C. De Cooman: Scripta Metall., 2010, vol. 64, pp. 649–52.

    Article  Google Scholar 

  40. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  CAS  Google Scholar 

  41. O. Grässel: Int. J. Plasticity, 2003, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  42. G.B. Olson: in Structure and Properties of Dual Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 391–424.

  43. G.B. Olson and M. Cohen: Metall. Trans. A, 1982, vol. 13A, pp. 1907–14.

    Google Scholar 

  44. D.H. Shin: Met. Mater. Int., 2001, vol. 7, pp. 573–77.

    Article  CAS  Google Scholar 

  45. P. Hodgson, M.R. Hickson, and R.K. Gibbs: Mater. Sci. Forum, 1998, vols. 284–286, pp. 63–72.

    Article  Google Scholar 

  46. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  47. N. Tsuji: Scripta Mater., 1999, vol. 40, pp. 795–800.

    Article  CAS  Google Scholar 

  48. L. Brake, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, and N. Akdut: Metall. Mater. Trans. A, 2006, vol. 37A, pp, 307–17.

    Article  Google Scholar 

  49. H. Schumann: Kristall und Technik, 1974, vol. 9, pp. 1141–50.

    Article  CAS  Google Scholar 

  50. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation under Award No. CMMI-0729114 and the sponsors of the Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines. This work also benefited from use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE AC5206NA25396. Additionally, the authors acknowledge U.S. Steel for providing the experimental material, D.W. Brown and T.A. Sisneros for their assistance with the neutron experiments, and the 2009 Neutron Scattering School at the Lujan Center for providing the opportunity for one author (Gibbs) to learn about the capabilities of neutron diffraction.

The material in this article is intended for general information only. Any use of this material in relation to any specific application should be based on independent examination and verification of its unrestricted availability for such use and determination of suitability for the application by professionally qualified personnel. No license under any patents or other proprietary interest is implied by the publication of this article. Those making use of or relying upon the material assume all risks and liability arising from such use or reliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Gibbs.

Additional information

Manuscript submitted January 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, P.J., De Moor, E., Merwin, M.J. et al. Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel. Metall Mater Trans A 42, 3691–3702 (2011). https://doi.org/10.1007/s11661-011-0687-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0687-y

Keywords

Navigation