Skip to main content
Log in

Characterization of Inclusions in 3rd Generation Advanced High-Strength Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Samples taken from laboratory-produced 3rd generation advanced high-strength steels, solidified at a low cooling rate, have been investigated to study the characteristics of non-metallic inclusions. Two steels, containing 2 and 5 pct Mn content, were produced for this purpose. A higher number of total inclusions were observed in 5 pct Mn steel. The four main types of inclusions observed were Al2O3, AlN, MnS, and AlSiMn-oxide. These classes were divided into subclasses according to variations in their chemistry. The major subclasses of AlN inclusions are either plate-like or regular in shape and have different size distributions. Thermodynamic calculations suggest that plate-like AlN inclusions are formed at the initial stage of solidification, while faceted/regular-shaped inclusions are precipitated toward the end of solidification. Moreover, it was found that the size of nitride inclusions is related to their N content. This phenomenon is discussed from the viewpoint of nucleation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Grajcar, U. Galisz, L. Bulkowski, M. Opiela, and P. Skrzypczyk: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 245–55.

    Google Scholar 

  2. G. Gigacher, R. Pierer, J. Wiener, and C. Bernhard: Adv. Eng. Mater., 2006, vol. 8, pp. 1096–1100.

    Article  Google Scholar 

  3. A. Grajcar, E. Kalinowska-Ozgowicz, M. Opiela, B. Grzegorczyk, and K. Gołombek: Arch. Mater. Sci. Eng., 2011, vol. 49, pp. 5–14.

    Google Scholar 

  4. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–3702.

    Article  Google Scholar 

  5. S.E. Kang, J.R. Banerjee, A. Tuling, and B. Mintz: Mater. Sci. Technol., 2014, vol. 30, pp. 1328–35.

    Article  Google Scholar 

  6. S.E. Kang, J.R. Banerjee, and B. Mintz: Mater. Sci. Technol., 2012, vol. 28, pp. 589–96.

    Article  Google Scholar 

  7. B. Mintz, A. Tuling, and A. Delgado: Mater. Sci. Technol., 2003, vol. 19, pp. 1721–26.

    Article  Google Scholar 

  8. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833–55.

    Article  Google Scholar 

  9. J. Yang, Y.N. Wang, X.M. Ruan, R.Z. Wang, K. Zhu, Z.J. Fan, Y.C. Wang, C.B. Li, and X.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1365–75.

    Article  Google Scholar 

  10. D.Z. Li, Y.H. Wei, B.S. Xu, L.F. Hou, and P.D. Han: Ironmak. Steelmak., 2011, vol. 38, pp. 540–45.

    Article  Google Scholar 

  11. Y.-N. Wang, J. Yang, R.-Z. Wang, X.-L. Xin, and L.-Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1697–1712.

    Article  Google Scholar 

  12. M.-K. Paek, J.-M. Jang, K.-H. Do, and J.-J. Pak: Met. Mater. Int., 2013, vol. 19, pp. 1077–81.

    Article  Google Scholar 

  13. J.H. Shin, J. Lee, D.J. Min, and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1081–85.

    Article  Google Scholar 

  14. M. Nabeel, M. Alba, S. Sun, A. Karasev, and P. Jonsson: Proc. AISTech 2018, Philadelphia, PA, May 7–10, 2018, pp. 1483–91.

  15. Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1378–89.

    Article  Google Scholar 

  16. H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li: Ironmak. Steelmak., 2016, vol. 43, pp. 171–79.

    Article  Google Scholar 

  17. G. Gigacher, W. Krieger, P.R. Scheller, and C. Thomser: Steel Res. Int., 2005, vol. 76, pp. 644–49.

    Article  Google Scholar 

  18. J.H. Park, D.J. Kim, and D.J. Min: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2316–24.

    Article  Google Scholar 

  19. H. Yin: Iron Steel Technol., 2006, vol. 3, pp. 64–73.

    Google Scholar 

  20. H. Liu, J. Liu, S.K. Michelic, S. Shen, X. Su, B. Wu, and H. Ding: Steel Res. Int., 2016, vol. 87, pp. 1723–32.

    Article  Google Scholar 

  21. M.-K. Paek, J.-M. Jang, M. Jiang, and J.-J. Pak: ISIJ Int., 2013, vol. 53, pp. 973–78.

    Article  Google Scholar 

  22. S.E. Kang: Ph.D. Thesis, City University, London, 2014.

  23. B. Steenken, J.L.L. Rezende, and D. Senk: Mater. Sci. Technol., 2017, vol. 33, pp. 567–73.

    Article  Google Scholar 

  24. S.E. Kang, A. Tuling, J.R. Banerjee, W.D. Gunawardana, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 95–100.

    Article  Google Scholar 

  25. A. Tuling and B. Mintz: Mater. Sci. Technol., 2016, vol. 32, pp. 568–75.

    Article  Google Scholar 

  26. M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, and S. Van Der Zwaag: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 765–76.

    Article  Google Scholar 

  27. Y.L. Chen, Y. Wang, and A.M. Zhao: J. Iron Steel Res. Int., 2012, vol. 19, pp. 51–56.

    Article  Google Scholar 

  28. M. Lückl, T. Wojcik, E. Povoden-Karadeniz, S. Zamberger, and E. Kozeschnik: Steel Res. Int., 2018, vol. 89, pp. 1–9.

    Article  Google Scholar 

  29. M. Alba, M. Nabeel, and N. Dogan: McMaster University, Hamilton, ON, Canada, unpublished research, 2018.

  30. H. Goto, K.I. Miyazawa, W. Yamada, K. Tanaka: ISIJ Int., vol. 35, pp. 708–14.

    Article  Google Scholar 

  31. M.-K. Paek, J.-M. Jang, H.-J. Kang, and J.-J. Pak: ISIJ Int., 2013, vol. 53, pp. 535–37.

    Article  Google Scholar 

  32. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  Google Scholar 

  33. D.-H. Kim, M.-S. Jung, H. Nam, M.-K. Paek, and J.-J. Pak: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1106–12.

    Article  Google Scholar 

  34. H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773–78.

    Article  Google Scholar 

  35. L. Zheng: Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2016.

  36. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14–21.

    Article  Google Scholar 

  37. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 42–49.

    Article  Google Scholar 

  38. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2092–2103.

    Article  Google Scholar 

  39. B.J. Keene: Slag Atlas, 2nd ed, Verein Deutsscher Eisenhüttenleute (VDEh), ed., Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p. 526.

  40. J. Tanabe and H. Suito: Steel Res., 1995, vol. 66, pp. 146–53.

    Article  Google Scholar 

  41. M. Nabeel, A. Karasev, and P.G. Jönsson: ISIJ Int., 2015, vol. 55, pp. 2358–64.

    Article  Google Scholar 

  42. M. Suzuki, R. Yamaguchi, K. Murakami, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 247–56.

    Article  Google Scholar 

  43. R. Dekkers, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 161–71.

    Article  Google Scholar 

  44. Ichiro Sunagawa: Forma, 1999, pp. 147–66.

  45. M. Van Ende: Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2010.

Download references

Acknowledgments

We express gratitude to the Natural Sciences and Engineering Research Council of Canada (Project No. 20002139) for the financial support for this work. Further, we thank Dr. Stanley Sun and Ms. Sun Li, ArcelorMittal Dofasco, for their valuable time and fruitful discussions. The authors also acknowledge Canadian Centre for Electron Microscopy (CCEM) at McMaster University for assistance with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nabeel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeel, M., Alba, M., Karasev, A. et al. Characterization of Inclusions in 3rd Generation Advanced High-Strength Steels. Metall Mater Trans B 50, 1674–1685 (2019). https://doi.org/10.1007/s11663-019-01605-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01605-0

Navigation