Skip to main content
Log in

Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Wu, X.J. Jin, C.L. Wang, and L. Wang: J. Mater. Eng. Perform., 2016, vol. 25, pp. 1603–10.

    Article  Google Scholar 

  2. A. Turetta, S. Bruschi, and A. Ghiotti: J. Mater. Process. Technol., 2006, vol.177, pp. 396–400.

    Article  Google Scholar 

  3. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    Article  Google Scholar 

  4. P.X. Liu, B. Zhu, Y.L. Wang, and Y.S. Zhang: Metall. Mater. Trans. A, 2016, vol. 64, pp. 4325–33.

    Article  Google Scholar 

  5. J.G. Speer, E.D. Moor, K.O. Findley, D.K. Matlock, B.C. DeCooman, and D.V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3591–3601.

    Article  Google Scholar 

  6. C. Wang, H. Ding, M.H. Cai, and B. Rolfe: Mater. Sci. Eng., 2014, vol. 610, pp. 436–44.

    Article  Google Scholar 

  7. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    Article  Google Scholar 

  8. H.P. Liu, X.W. Lu, X.J. Jin, D. Han, and J. Shi: Scr. Mater., 2011, vol. 64, pp. 749–52.

    Article  Google Scholar 

  9. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–139.

    Article  Google Scholar 

  10. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  11. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmondsd, and M.J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149–52.

    Article  Google Scholar 

  12. J.G. Speer, D.K. Matlock, B.C. Decooman, and J.G. Schroth: Scr. Mater., 2005, vol. 52, pp. 83–85.

    Article  Google Scholar 

  13. N. Zhong, X.D. Wang, Y.H. Rong, and L. Wang: J. Mater. Sci. Technol., 2006, vol. 22, pp. 751–55.

    Google Scholar 

  14. M.J. Santofimia, L. Zhao, and J. Sietsma: Scr. Mater., 2008, vol. 59, pp. 159–62.

    Article  Google Scholar 

  15. B. Kim, J. Sietsma, M.J. Santofimia: Mater. Des., 2017, vol. 127, pp. 336–345.

    Article  Google Scholar 

  16. Y. Chang, G.Z. Li, C.Y. Wang, X.D. Li, and D. Han: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3194–200.

    Article  Google Scholar 

  17. J. Svoboda, F.D. Fischer, P. Fratzl, E. Gamsjager, and N.K. Simha: Acta Mater., 2001, vol. 49, pp. 1249–59.

    Article  Google Scholar 

  18. J. Crank: The Mathematics of Diffusion, 2nd ed., Oxford University Press, London, 1975, pp. 137–59.

    Google Scholar 

  19. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2573–80.

    Article  Google Scholar 

  20. F.C. Rizzo, D.V. Edmonds, K. He, J.G. Speer, D.K. Matlock, and A.J. Clarke: Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, unpublished research, 2005.

  21. M. Hillert and J. Ågren: Scr. Mater., 2004, vol. 50, pp. 697–99.

    Article  Google Scholar 

  22. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin.Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    Article  Google Scholar 

  23. Y. Sakuma, O. Matsumura, and H.Takechi: Metall. Mater. Trans. A, 1991, vol. 22, pp. 489–98.

    Article  Google Scholar 

  24. S.M.C. van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487–95.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51405171) and the National Natural Science Foundation of China (Grant No. U1564203). The authors would like to thank the State Key Lab of Materials Processing and Die and mold Technology for their assistance in the tensile experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Additional information

Manuscript submitted August 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Liu, Z., Wang, Y. et al. Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel. Metall Mater Trans A 49, 1304–1312 (2018). https://doi.org/10.1007/s11661-018-4484-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4484-8

Navigation