Skip to main content

Advertisement

Log in

Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The quenching and partitioning steel is the representative of the third generation of advanced high-strength steel. The effect of quenching temperature on the microstructure and mechanical property of ferrite-containing quenching and partitioning steel was studied by intercritical annealing quenching and partitioning processes. When preparing a test steel with a tensile strength of 1300 MPa and total elongation of 19%, it is found that the actual optimum quenching temperature was lower than that calculated according to the constrained carbon equilibrium. The results indicate that the martensite start temperature of the austenite was overestimated when considering the diffusion of carbon only. Austenite grain size which is affected by low temperature and the existence of ferrite during intercritical annealing influenced the optimum quenching temperature. A scheme considering the diffusion of various alloying elements and austenite grain size was proposed and verified. Using this scheme, the optimum quenching temperature of intercritically annealed quenching and partitioning steel with complex microstructures was well predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.G. Speer, E. De Moor, A.J. Clarke, Mater. Sci. Technol. 31 (2015) 3–9.

    Article  Google Scholar 

  2. Y.H. Jiang, S. Yao, W. Liu, S.P. Liu, G. Tian, A.M. Zhao, J. Iron Steel Res. Int. 27 (2020) 981–991.

    Article  Google Scholar 

  3. Z. Wang, M.X. Huang, Metall. Mater. Trans. A 50 (2019) 5650–5655.

    Article  Google Scholar 

  4. H. Zheng, W. Li, Y. Gong, L. Wang, X.J. Jin, J. Iron Steel Res. Int. 25 (2018) 1140–1148.

    Article  Google Scholar 

  5. B.B. He, M. Wang, L. Liu, M.X. Huang, Mater. Sci. Technol. 35 (2019) 2109–2114.

    Article  Google Scholar 

  6. J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  7. X. Wang, L. Liu, R.D. Liu, M.X. Huang, Metall. Mater. Trans. A 49 (2018) 1460–1464.

    Article  Google Scholar 

  8. M.X. Huang, B.B. He, J. Mater. Sci. Technol. 34 (2018) 417–420.

    Article  Google Scholar 

  9. A.S. Nishikawa, G. Miyarnoto, T. Furuhara, A.P. Tschiptschin, H. Goldenstein, Acta Mater. 179 (2019) 1–16.

    Article  Google Scholar 

  10. M.Q. Liao, Z.H. Lai, A. Bao, Y. Liu, D.N. Yang, T.Y. Han, J.C. Zhu, R.D. Zhao, J. Iron Steel Res. Int. 26 (2019) 1088–1095.

    Article  Google Scholar 

  11. S.H. Sun, A.M. Zhao, Mater. Sci. Technol. 34 (2018) 347–354.

    Article  Google Scholar 

  12. S.S. Nayak, R. Anumolua, R.D.K. Misraa, K.H. Kim, D.L. Lee, Mater. Sci. Eng. A 498 (2008) 442–456.

    Article  Google Scholar 

  13. A. Mark, M. Westphal, D. Boyd, J. McDermid, D. Embury, Can. Metall. Quart. 48 (2009) 237–245.

    Article  Google Scholar 

  14. A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, N. Kheradmand, Mater. Sci. Eng. A 725 (2018) 341–349.

    Article  Google Scholar 

  15. L. Li, Z.L. Mi, Z. Wang, Y.G. Yang, Z.C. Yu, Mater. Res. Express 5 (2018) 066553.

    Article  Google Scholar 

  16. Y. Chong, G.Y. Deng, A.O. Yi, A. Shibata, N. Tsuji, J. Alloy. Compd. 811 (2019) 152040.

    Article  Google Scholar 

  17. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.

    Article  Google Scholar 

  18. R. Ding, D. Tang, A. Zhao, Scripta Mater. 88 (2014) 21–24.

    Article  Google Scholar 

  19. R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59–69.

    Article  Google Scholar 

  20. X. Long, R. Zhang, F. Zhang, G. Du, X. Zhao, Mater. Sci. Eng. A 760 (2019) 158–164.

    Article  Google Scholar 

  21. J. Zhao, F. Zhang, Mater. Sci. Eng. A 771 (2020) 138637.

    Article  Google Scholar 

  22. I. Tamura, Met. Sci. 16 (1982) 245–253.

    Article  Google Scholar 

  23. A. Devaraj, Z. Xu, F. Abu-Farha, X. Sun, L.G. Hector Jr., JOM 70 (2018) 1752–1757.

    Article  Google Scholar 

  24. S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, X. Li, Corros. Sci. 139 (2018) 83–96.

    Article  Google Scholar 

  25. W.J. Hui, Z.H. Wang, Z.B. Xu, Y.J. Zhang, X.L. Zhao, J. Iron Steel Res. Int. 26 (2019) 1011–1021.

    Article  Google Scholar 

  26. J. Samei, Y. Salib, M. Amirmaleki, D.S. Wilkinson, Scripta Mater. 173 (2019) 86–90.

    Article  Google Scholar 

  27. Z. Xiong, P.J. Jacques, A. Perlade, T. Pardoen, Metall. Mater. Trans. A 50 (2019) 3502–3513.

    Article  Google Scholar 

  28. J. Hidalgo, C. Celada-Casero, M.J. Santofimia, Mater. Sci. Eng. A 754 (2019) 766–777.

    Article  Google Scholar 

  29. S.J. Lee, S. Lee, B.C. De Cooman, Int. J. Mater. Res. 104 (2013) 423–429.

    Article  Google Scholar 

  30. Z.R. Hou, X.M. Zhao, W. Zhang, H.L. Liu, H.L. Yi, Mater. Sci. Technol. 34 (2018) 1168–1175.

    Article  Google Scholar 

  31. L. Liu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, Scripta Mater. 150 (2018) 1–6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Key Research and Development Program of Thirteenth Five-Year Plan Period (Grant No. 2017YFB0304400) and Production and Application Demonstration Platform of New Energy Automotive Material (Grant No. TC180A6MR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Pf., Liang, Jh., Chen, Wj. et al. Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel. J. Iron Steel Res. Int. 29, 307–315 (2022). https://doi.org/10.1007/s42243-020-00535-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00535-5

Keywords

Navigation