Skip to main content
Log in

Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Processing peculiarities and functions of alloying elements, such as Si and Mn, were studied for improving formability of steel sheets with mixed microstructures. Annealing a sheet steel with 0.2 pct C in the intercritical range produced very fine particles of retained austenite which were moderately stabilized due to C enrichment by subsequent holding in the bainite transformation range. Its strength-ductility balance is greatly superior to that of other dual-phase steels due to transformation-induced plasticity (TRIP). The holding time in the bainite transformation range varies with temperature, depending on the activation energy of C diffusion in austenite, and shifts to longer times with an increase of Si or Mn additions. The optimum cooling rate from the intercritical region is reduced with an increase of Mn content but is not influenced by Si content. Additional Mn makes the retained austenite content larger, although uniform elongation remains the same. In this case, the product of tensile strength and total elongation is increased due to an increase in the tensile strength. Contrary to Mn, Si does not affect retained austenite content but improves the uniform elongation by increasing its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hayami and T. Furukawa:Microalloying 75, Union Carbide Corp., New York, NY, 1975, pp. 78–87.

    Google Scholar 

  2. T. Furukawa, H. Morikawa, H. Takechi, and K. Koyama:Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., AIME, New York, NY, 1979, pp. 281–303.

    Google Scholar 

  3. Narasimha-Rao V. Bangaru and A.K. Sachdev:Metall. Trans. A, 1982, vol. 13A, pp. 1899–906.

    Google Scholar 

  4. A.K. Sachdev:Acta Metall., 1983, vol. 31, pp. 2037–42.

    Article  CAS  Google Scholar 

  5. V.F. Zackay, E.R. Parker, D. Fahr, and R. Bush:Trans. Am. Soc. Met., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  6. S.J. Mates and R.F. Hehemann:TMS-AIME, 1961, vol. 221, pp. 179–85.

    Google Scholar 

  7. R. Le Houllier, G. Begin, and A. Dube:Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Article  Google Scholar 

  8. V.M. Pivovarov, I.A. Tananko, and A.A. Levchenko:Phys. Met. Metallogr., 1972, vol. 32, pp. 116–22.

    Google Scholar 

  9. E. Dorazil and J. Svejcar:Arch. Eisenhüttenwes., 1979, vol. 50, pp. 293–98.

    CAS  Google Scholar 

  10. R.F. Hehemann, K.R. Kinsman, and H.I. Aaronson:Metall. Trans., 1972, vol. 3, pp. 1077–94.

    Article  CAS  Google Scholar 

  11. H.K.D.H. Bhadeshia and D.V. Edmonds:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  12. H.K.D.H. Bhadeshia and D.V. Edmonds:Met. Sci., 1983, vol. 17, pp. 411–19.

    Article  CAS  Google Scholar 

  13. H.K.D.H. Bhadeshia and D.V. Edmonds:Met. Sci., 1983, vol. 17, pp. 420–25.

    Article  CAS  Google Scholar 

  14. H.K.D.H. Bhadeshia and D.V. Edmonds:Acta Metall., 1980, vol. 28, pp. 1265–73.

    Article  CAS  Google Scholar 

  15. H. Seilstorfer and N.B. Ottobrunn:Arch Eisenhüttenwes., 1974, vol. 45, pp. 623–27.

    CAS  Google Scholar 

  16. B.P.J. Sandvik and H.P. Nevalanien:Met. Technol., 1981, vol. 8, pp. 213–20.

    CAS  Google Scholar 

  17. V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 422–31.

    CAS  Google Scholar 

  18. V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 432–40.

    CAS  Google Scholar 

  19. V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 441–49.

    CAS  Google Scholar 

  20. K. Tomita, T. Okita, and K. Nakaoka:Trans. Iron Steel Inst. Jpn., 1984, vol. 24, p. B363.

    Google Scholar 

  21. O. Matsumura, Y. Sakuma. and H. Takechi:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.

    CAS  Google Scholar 

  22. O. Matsumura, Y. Sakuma, and H. Takechi:Scripta Metall., 1987, vol. 21, pp. 1301–06.

    Article  CAS  Google Scholar 

  23. H.C. Chen, K. Tomokiyo, H. Era, and M. Shimizu:Tech. Rep. Kyushu Univ., 1987, vol. 60, pp. 643–49.

    CAS  Google Scholar 

  24. K. Tsuzaki, J. Inada, K. Matsumoto, and M. Maki:Current Adv. in Mat. and Processes, 1988, vol. 1, p. 1855.

    Google Scholar 

  25. K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  26. S. Bandoh, O. Matsumura, and Y. Sakuma:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 569–74.

    CAS  Google Scholar 

  27. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss:Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.

    CAS  Google Scholar 

  28. K. Shinoda and T. Yamada:Netsu Shori, 1980, vol. 20, pp. 326–30.

    CAS  Google Scholar 

  29. S. Tagashira, T. Yamada, T. Kamiyo, and K. Shinoda:Curr. Adv. Mater. Processes, 1988, vol. 1, p. 1774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, Y., Matsumura, O. & Takechi, H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metall Trans A 22, 489–498 (1991). https://doi.org/10.1007/BF02656816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656816

Keywords

Navigation