Skip to main content
Log in

Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the ‘martensite/austenite interface’ is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature (M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-2622.

    Article  Google Scholar 

  2. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-237.

    Article  Google Scholar 

  3. M. Hillert, J. Ågren: Scripta Mater., 2005, vol. 52, pp. 87-88.

    Article  Google Scholar 

  4. Y. Sakuma, O. Matsumura, H. Takechi: Metall. Trans. A, 1991, vol. 22, pp. 489-498.

    Article  Google Scholar 

  5. H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, G.D. Wang: Scripta Mater., 2013, vol. 68, pp. 370-374.

    Article  Google Scholar 

  6. J. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, D.V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3591-3601.

    Article  Google Scholar 

  7. M.J. Santofimia, L. Zhao, J. Sietsma: Scripta Mater., 2008, vol. 59, pp. 159-162.

    Article  Google Scholar 

  8. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma: Acta Mater., 2011, vol. 59, pp. 6059-6068.

    Article  Google Scholar 

  9. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, M.J. Santofimia: Scripta Mater., 2009, vol. 61, pp. 149-152.

    Article  Google Scholar 

  10. T.Y. Hsu, X. Li: Acta Metall. Sin., 1983, vol. 19, pp. 83-88.

    Google Scholar 

  11. G.A. Thomas, J.G. Speer, D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3652-3659.

    Article  Google Scholar 

  12. C.L. Magee: Phase Transformations, p. 115, OH: American Society of Metals, 1970.

    Google Scholar 

  13. T.Y. Hsu: Acta Metall. Sin., 1979, vol. 15, pp. 329-338.

    Google Scholar 

  14. L. Kaufman, M. Cohen: Prog. Met. Phys., 1958, vol. 7, pp. 165-246.

    Article  Google Scholar 

  15. L. Kaufman, E. Clougherty, R. Weiss: Acta Metall., 1963, vol. 11, pp. 323-335.

    Article  Google Scholar 

  16. T.Y. Hsu, H. Zhang, S. Luo: Acta Metall. Sin., 1984, vol. 20, pp. 151-161.

    Google Scholar 

  17. T.Y. Hsu, H. Chang: Acta Metall., 1984, vol. 32, pp. 343-348.

    Article  Google Scholar 

  18. P.G. Shewmon: Diffusion in Solids, McGraw-Hill, New York 1963, p. 1.

  19. J. Crank: The mathematics of diffusion, 2nd ed., p. 137, Oxford Science Publication, 1975.

    Google Scholar 

  20. J. Ågren: Scripta Metall., 1986, vol. 20, pp. 1507-1510.

    Article  Google Scholar 

  21. E. Seo, L. Cho, B. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4022-4037.

    Article  Google Scholar 

  22. E. Seo, L. Cho, and B. De Cooman: 5th International Conference of Hot Sheet Metal Forming of High-performance Steel, Toronto, 2015, pp. 745–51.

  23. H. Bhadeshia: Met. Sci., 1981, vol. 15, pp. 175-177.

    Article  Google Scholar 

  24. K.I. Sugimoto, N. Usui, M. Kobayashi, S.I. Hashimoto: ISIJ Int., 1992, vol. 32, pp. 1311-1318.

    Article  Google Scholar 

  25. D.P. Koistinen, R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51275185) and the National Natural Science Foundation of China (Grant No. 51405171). The authors would like to express their gratitude to Dr. Xiaochuan Xiong (from Easyforming Steel Technology Co. Ltd.) and Prof. Yao Shen (from Shanghai Jiao Tong University) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng Zhang.

Additional information

Manuscript submitted September 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhu, B., Wang, Y. et al. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels. Metall Mater Trans A 47, 4325–4333 (2016). https://doi.org/10.1007/s11661-016-3560-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3560-1

Keywords

Navigation