Skip to main content
Log in

The Fracture Characteristics of a Near Eutectic Al-Si Based Alloy Under Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 × 10−4/s to 102/s and three temperatures RT, 373 K, and 473 K (100 °C and 200 °C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Similarly, evidence of good interfacial bonding between Si particles and matrix is observed by the fact that several Si particles show multiple fracture, which can only occur under significant load transfer between the matrix and the particle.

References

  1. A. Jambor and M. Beyer: Mater. Design, 1997, vol. 18, pp. 203-209.

    Article  CAS  Google Scholar 

  2. D.D. Goehler: Proc. of Innovations and Advancements in Aluminium Casting Technology—AFS Special Conf., City of Industry, CA, AFS, Des Plaines, IL, 1998, pp. 103–06.

  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler and A. Vieregge: Mater. Sci. Engg. A, 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  4. J.C. Jaquet: 2nd Int. Conf. on Molten Aluminium Proc., Orlando, FL, 1989, AFS, Des Plaines, IL, 1989, paper 2-1.

  5. C.W. Meyers, A.Saigal and J.T. Berry: AFS Trans., 1983, vol. 91, pp. 281-88.

    CAS  Google Scholar 

  6. M.F. Hafiz and T. Kobayashi: Scripta Metall., 1994, vol.30, pp. 475-480.

    Article  CAS  Google Scholar 

  7. G. Guiglionda and W.J. Poole: Mater.Sci & Engg. A, 2002, vol. 336, pp. 159-169.

    Article  Google Scholar 

  8. A.M. Samuel and F.H. Samuel: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2359-72.

    Article  CAS  Google Scholar 

  9. J-.W. Yeh and W-.P. Liu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3558-3568.

    Article  CAS  Google Scholar 

  10. M.D. Dighe and A.M. Gokhale: Scripta Mater., 1997, vol. 37(9), pp. 1435–1440.

    Article  CAS  Google Scholar 

  11. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1185-99.,

    Article  CAS  Google Scholar 

  12. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1201-33.

    Article  CAS  Google Scholar 

  13. C.H. Caceres, J.R. Griffiths and P. Reiner: Acta. Mater., 1996, vol. 44(1), pp. 15-23.

    Article  CAS  Google Scholar 

  14. C.H. Caceres and J.R. Griffiths: Acta. Mater., 1996, vol. 44(1), pp. 25-33.

    Article  CAS  Google Scholar 

  15. K. Wallin, T.Saario and K.Torronen: Int. J. Fract. 1987, vol.32, pp. 201-209.

    Article  Google Scholar 

  16. M.F. Horstemeyer and A.M. Gokhale: Int. J. of solids and Struct., 1999, vol.36, pp. 5029-5055.

    Article  Google Scholar 

  17. G.Huber, Y.Brechet and T.Pardoen: Acta Mater., 2005, vol.53, pp. 2739-2749.

    Article  CAS  Google Scholar 

  18. M.F. Horstemeyer, J. Lathrop, A.M. Gokhale and M. Dighe: Theor. Appl. Fract. Mech., 2000, vol.33, pp. 31-47.

    Article  CAS  Google Scholar 

  19. W.J. Poole and N.Charras: Mater. Sci. & Engg. A, 2005, vol. 406, pp. 300-308.

    Article  Google Scholar 

  20. M.D. Dighe, A.M. Gokhale, M.F. Horstemeyer and D.A. Mosher: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1725-1731.

    Article  CAS  Google Scholar 

  21. L.L. Mishnaevsky Jr., N. Lippmann, S.Schmauder and P. Gumbsch: Engg. Frac. Mech., 1999, vol.63, pp. 395-411.

    Article  Google Scholar 

  22. Q.G. Wang, C.H. Caceres and J.R. Griffiths: Metall. Mater. Trans., 2003, vol. 34A, pp. 2901-2912.

    Article  CAS  Google Scholar 

  23. Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887-2899.

    Article  CAS  Google Scholar 

  24. C.H. Caceres, C.J. Davidson and J.R. Griffiths: Mater. Sci. Engg. A, 1995, vol. 197, pp. 171-79.

    Article  Google Scholar 

  25. D.L. McLellan: AFS Trans., 1982, vol.90, pp. 173-191.

    CAS  Google Scholar 

  26. C.W. Meyers: AFS Trans., 1986, vol.94, pp. 511-518.

    CAS  Google Scholar 

  27. Q.G. Wang and C.H. Caceres: Mater. Sci. Engg. A, 1997, vol. 234-236, pp. 106-109.

    Google Scholar 

  28. A.M. Gokhale, M.D. Dighe, M. Horstemeyer: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 905–907.

    Article  CAS  Google Scholar 

  29. E. Rincon, H.F. Lopez, M.M. Cisneros and H. Mancha: Mater. Sci. Engg. A, 2009, vol. 519(1-2), pp. 128-140.

    Google Scholar 

  30. W.J. Poole and E.J. Dowdle: Scripta Mater., 1998, vol. 39(9), pp.1281-1287.

    Article  CAS  Google Scholar 

  31. A. Tewari and A.M. Gokhale: Mater. Charac., 2001, vol. 46(4), pp. 329-335.

    Article  CAS  Google Scholar 

  32. A. Kelly and W.B. Tyson: J. Mech. Phys. Solids, 1965, vol. 13, pp. 329-350.

    Article  CAS  Google Scholar 

  33. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825-37.

    CAS  Google Scholar 

  34. M.D. Dighe, A.M. Gokhale and M.F. Horstemeyer: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 555-565.

    Article  Google Scholar 

  35. F. Ebrahimi and L. Kalwani: Mat. Sci. Engg. A, 1999, vol. 268, pp. 116-26.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank General Motors for providing materials, and the facilities in the India Science Lab, and the financial support for the current study. In particular, we would like to acknowledge the support from the lab's Group Manager Dr. Arun Kumar, and technical discussions with Dr. Sushil Mishra from the General Motors' Global R&D Center at Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Tewari.

Additional information

Manuscript submitted April 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, S., Tewari, A. & Kumar, S. The Fracture Characteristics of a Near Eutectic Al-Si Based Alloy Under Compression. Metall Mater Trans A 44, 2358–2368 (2013). https://doi.org/10.1007/s11661-012-1580-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1580-z

Keywords

Navigation