Skip to main content
Log in

Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tensile properties and fracture behavior of cast aluminum alloys A356 and A357 strongly depend on secondary dendrite arm spacing (SDAS), Mg content, and, in particular, the size and shape of eutectic silicon particles and Fe-rich intermetallics. In the unmodified alloys, increasing the cooling rate during solidification refines both the dendrites and eutectic particles and increases ductility. Strontium modification reduces the size and aspect ratio of the eutectic silicon particles, leading to a fairly constant particle size and aspect ratio over the range of SDAS studied. In comparison with the unmodified alloys, the Sr-modified alloys show higher ductility, particularly the A356 alloy, but slightly lower yield strength. In the microstructures with large SDAS (>50 µm), the ductility of the Sr-modified alloys does not continuously decrease with SDAS as it does in the unmodified alloy. Increasing Mg content increases both the matrix strength and eutectic particle size. This decreases ductility in both the Sr-modified and unmodified alloys. The A356/357 alloys with large and elongated particles show higher strain hardening and, thus, have a higher damage accumulation rate by particle cracking. Compared to A356, the increased volume fraction and size of the Fe-rich intermetallics (π phase) in the A357 alloy are responsible for the lower ductility, especially in the Sr-modified alloy. In alloys with large SDAS (>50 µm), final fracture occurs along the cell boundaries, and the fracture mode is transgranular. In the small SDAS (<30 µm) alloys, final fracture tends to concentrate along grain boundaries. The transition from transgranular to intergranular fracture mode is accompanied by an increase in the ductility of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Goehler: Proc. of Innovations and Advancements in Aluminum Casting Technology—AFS Special Conf., City of Industry, CA, 1988, American Foundarymen’s Society, Des Plaines, IL, 1998, pp. 103–06.

    Google Scholar 

  2. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  3. R.E. Spear and G.R. Gardner: AFS Trans., 1963, vol. 71, pp. 209–15.

    Google Scholar 

  4. D. Apelian, S. Shivkumar, and G. Sigworth: AFS Trans., 1989, vol. 97, pp. 727–42.

    Google Scholar 

  5. Z. Shan and A.M. Gokhale: Acta Mater., 2001, vol. 49, pp. 2001–15.

    Article  CAS  Google Scholar 

  6. S.F. Frederick and W.A. Bailey: Trans. TMS-AIME, 1968, vol. 242, p. 2063.

    CAS  Google Scholar 

  7. K.J. Oswalt and M.S. Misra: AFS Trans., 1980, vol. 88, pp. 845–62.

    CAS  Google Scholar 

  8. A. Gangulee and J. Gurland: Trans. TMS-AIME, 1967, vol. 239, pp. 269–72.

    Google Scholar 

  9. C.W. Meyers, A. Saigal, and J.T. Berry: AFS Trans., 1983, vol. 91, pp. 281–88.

    CAS  Google Scholar 

  10. C.H. Cáceres, C.J. Davidson, and J.R. Griffiths: Mater. Sci. Eng. A, 1995, vol. 197, pp. 171–79.

    Article  Google Scholar 

  11. A. Couture: AFS Int. Cast Met. J., 1981, vol. 6, pp. 9–17.

    Google Scholar 

  12. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and Q.G. Wang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2611–18.

    Article  Google Scholar 

  13. J.A. Taylor, D.H. StJohn, J. Barresi, and M.J. Couper: Mater. Sci. Forum, 2000, vols. 331–337, p. 277.

    Article  Google Scholar 

  14. S. Chappell, T.A. Hughes, and G. Pollard: Metallography, 1970, vol. 3, pp. 235–37.

    Article  Google Scholar 

  15. R.C. Harris, S. Lipson, and H. Rosenthal: AFS Trans., 1956, vol. 64, pp. 470–81.

    Google Scholar 

  16. C.H. Cáceres, J.R. Griffiths, and P. Reiner: Acta Mater., 1996, vol. 44, pp. 15–23.

    Article  Google Scholar 

  17. Q.G. Wang, C.H. Cáceres, and J.R. Griffiths: AFS Trans., 1998, vol. 106, pp. 131–36.

    CAS  Google Scholar 

  18. A.T. Joenoes and J.E. Gruzleski: Cast Met., 1991, vol. 4 (2), pp. 62–71.

    Google Scholar 

  19. L. Bäckerud, G. Chai, and J. Tamminen: AFS/SKAN-Aluminum, American Foundrymen’s Society (AFS), Des Plaines, IL, USA, 1990, vol. 2, pp. 128–50.

    Google Scholar 

  20. Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

    Article  CAS  Google Scholar 

  21. W.H. Hunt, J.R. Brockenbrough, and P.E. Magnusen: Scripta Metall. Mater., 1991, vol. 25 (1), pp. 15–20.

    Article  CAS  Google Scholar 

  22. J. Yang, C. Cady, M.S. Hu, F. Zok, R. Mehrabian, and A.G. Evans: Acta Metall. Mater., 1990, vol. 38, pp. 2613–19.

    Article  CAS  Google Scholar 

  23. D.J. Lloyd: Acta Metall. Mater., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

  24. W.H. Hunt: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1992, Order No. 9312832.

    Google Scholar 

  25. D. Teirlinck, M.F. Ashby, and J.D. Embury: 6th Int. Conf. on Fracture, New Delhi, India, 4–10 December 1984, Pergamon, Oxford, 1986, pp. 105–25.

    Google Scholar 

  26. P.E. Magnusen, D.J. Srolovitz, and D.A. Koss: Acta Metall., 1990, vol. 38, pp. 1013–22.

    Article  CAS  Google Scholar 

  27. Q.G. Wang and C.H. Cáceres: Mater. Sci. Eng., 1998, vol. A241, pp. 72–82.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A 34, 2887–2899 (2003). https://doi.org/10.1007/s11661-003-0189-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0189-7

Keywords

Navigation