Skip to main content
Log in

Effect of β-Al5FeSi and π-Al8Mg3FeSi6 Phases on the Impact Toughness and Fractography of Al–Si–Mg-Based Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study investigated the decomposition of π-AlMgFeSi into β-Al5FeSi phase needles during extended periods of solution heat treatment and its effects on the mechanical properties of Al–7Si–0.55Mg–0.1Fe alloys. An analysis of the results obtained from the Charpy impact test using unnotched samples shows that the highest initiation and propagation energies are obtained for the as-cast and heat-treated alloys when these alloys are solidified at a high cooling rate and modified with strontium. An increase in the solution treatment time improves the impact properties of the alloys compared to the as-cast condition. In accordance with this finding, the recommended solution treatment time at which the maximum initiation and propagation energy values can be obtained is 20 h for all alloys studied. The results also show that the impact properties are more sensitive to the changes occurring in the microstructure which result from solution heat treatment and Sr modification, namely, the eutectic Si and π-phase morphologies, rather than those related to the tensile properties, i.e., to the Mg content in the matrix. Fracture analysis was carried out using a scanning electron microscope equipped with an EDX system for element analysis. The results obtained show that the tensile and impact fracture behavior of the Al–7Si–0.55Mg–0.1Fe alloys is controlled mainly by the morphology of the eutectic silicon. The π-phase iron intermetallics act as crack initiation sites and provide an easy path for crack propagation in both non-modified and Sr-modified alloys. The fracture analysis of the 80-h solution-treated sample shows the presence of newly formed β-phase needles which provide an additional source for crack initiation, and thus all the 80-h solution-treated alloys show the lowest energy values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. J.Z. Yi, Y.X. Gao, P.D. Lee, T.C. Lindley, Effect of Fe Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6). Mater. Sci. Eng. A 386, 396–407 (2004)

    Article  Google Scholar 

  2. W.A. Bailey, Beryllium Effect on Strength and Mechanical Properties of 356 Variant–T 6 Aluminum Alloys. AFS Trans. 72, 443–454 (1964)

    Google Scholar 

  3. S. Musmar, F. Mucciardi, J. Gruzleski, A Novwel In-Situ Thermal Analysis Technique for Aluminum alloys 356, 319, Al-X Si, Al–Si–Cu X Mg, and 6063-Experimental Study. AFS Trans. 115, 1–15 (2007)

    Google Scholar 

  4. Q.G. Wang, Plastic Deformation Behavior of Aluminum Casting Alloys A356/357. Metall. Mater. Trans. A 35A, 2707–2718 (2004)

    Article  Google Scholar 

  5. J. Barresi, M.J. Kerr, H. Wang, M.J. Couper, Effect of Magnesium, Iron and Cooling Rate on Mechanical Properties of Al–7Si–Mg Foundry Alloys. AFS Trans. 108, 563–570 (2000)

    Google Scholar 

  6. Q.G. Wang, Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357. Metall. Mater. Trans. A 34A, 2887 (2003)

    Article  Google Scholar 

  7. O. Vorren, J.E. Evensen, T.B. Pedersen, Microstructure and Mechanical Properties of Al–Si–Mg Casting Alloys. AFS Trans. 92, 459–466 (1984)

    Google Scholar 

  8. M.M. Tuttle, D.L. McLellan, Silicon Particle Characteristics in Al–Si–Mg Castings. AFS Trans. 90, 13–32 (1982)

    Google Scholar 

  9. M. Tsukuda, M. Harada, T. Suzuki, S. Koike, Interaction of Mg and Fe Content and Aging Temperature on mechanical Properties of Al–7%Si–Mg Alloys. J. Jpn. Inst. Light Met. 29(4), 131–138 (1979)

    Article  Google Scholar 

  10. Y. Kaneko, H. Murakami, K. Kuroda, S. Nakazaki, Squeeze Casting of Aluminum. Die Cast. Eng. 23(3), 26 (1979)

    Google Scholar 

  11. G.E. Nagel, J.P. Mouret, A357 Type Alloy with Improved Properties. AFS Trans. 91, 157–160 (1983)

    Google Scholar 

  12. J.A. Taylor, D.H. St John, L. Zheng, G.A. Edwards, J. Barresi, M.J. Couper, Solution Treatment Effect of Al–Si–Mg Casting Alloy: Part 1: Intermetallic Phase. Alum. Tran. 4(5), 95–110 (2001)

    Google Scholar 

  13. M. Tsukuda, S. Koike, M. Harada, The Heat Treatment of Al–7%Si–0.3Mg Alloy. J. Jpn. Inst. Light Met. 28(1), 8–14 (1978)

    Article  Google Scholar 

  14. M.M. Haque, M.A. Maleque, Effect of Process Variable on Structure and Properties of Aluminum–Silicon Piston Alloy. J. Mater. Process. Technol. 77, 122–128 (1998)

    Article  Google Scholar 

  15. M. Hafiz, T. Kobayashi, Mechanical Properties of Modified and Non-modified Eutectic Al–Si Alloys. J. Jpn. Inst. Light Met. 44(1), 28–34 (1994)

    Article  Google Scholar 

  16. M. Hafiz, T. Kobayashi, Metallurgical Factors Affecting Impact Toughness of Eutectic Al–Si Casting Alloy. Z. Met. 89(6), 445–449 (1998)

    Google Scholar 

  17. A. Thirugnanam, K. Sukumaran, K. Raghukandan, U.T.S. Pillai, B.C. Pai, Microstructural Aspects and Fracture Behavior of A356/357 Alloys-an-Overview. Trans. Indian Inst. Met. 58(5), 777–787 (2005)

    Google Scholar 

  18. S. Murali, K.S. Raman, K.S.S. Murthy, Effect of Magnesium, Iron (Impurity) and Solidification Rates on the Fracture Toughness of Al–7Si–0.3Mg Casting Alloy. Mater. Sci. Eng. A 151, 1–10 (1992)

    Article  Google Scholar 

  19. C.W. Meyers, J.S. Lyons, Fracture Toughness—Second Particle Interactions in A357 Alloys (Technology for Premium Quality Casting, Denver, 1988), pp. 151–178

    Google Scholar 

  20. S. Shivkumar, L. Wang, C. Keller, Impact Properties of A356–T6 Alloys. J. Mater. Eng. Perform. 3, 83–90 (1994)

    Article  Google Scholar 

  21. J.A. Taylor, D.H. St John, J. Barresi, M.J. Couper, Influence of Mg Content on The Microstructure and Solid Solution Chemistry of Al–7Si–Mg Casting Alloys During Solution Treatment. Mater. Sci. Forum 331–337, 277–282 (2000)

    Article  Google Scholar 

  22. S. Hotta, K. Saruki, M. Nakamura, Effects of T6 Heat Treatment on the Impact Strength of AC4C and AC2B Aluminum Alloy Castings Solidified for a Long Time. J. Jpn. Inst. Light Met. 37(7), 478–482 (1987)

    Article  Google Scholar 

  23. S. Shivkumar, The Interactive Effect of Sr Modification and Heat Treatment on The Mechanical Properties of Cast Aluminum Alloys, in 17th ASM Heat Treating Society Conference Proceedings, vol. 15–18 (1998), pp. 265–269

  24. N. Fat-Halla, Structural Modification of Al–Si Eutectic Alloy by Sr and its Effect on Tensile and Fracture Characteristics. J. Mater. Sci. 24, 2488–2492 (1989)

    Article  Google Scholar 

  25. Q.G. Wang, C.H. Câceres, The Fracture Mode in Al–Si–Mg Casting Alloys. Mater. Sci. Eng. A A 241, 72–82 (1998)

    Article  Google Scholar 

  26. R.C. Voigt, D.R. Bye, Microstructural Aspects of Fracture in A356. AFS Trans. 99, 33–50 (1991)

    Google Scholar 

  27. B. Zhang, M. Garro, C. Tagliano, Dendrite Arm Spacing in Aluminum Alloy Cylinder Heads Produced by Gravity Semi-Permanent Mold. Metall. Sci. Technol. 21(1), 3–9 (2003)

    Google Scholar 

  28. C. Triveno Rios, C. Bolfarini, W.J. Botta, C.S. Kiminami, Rapidly Solidified Al–Si–Mg Alloy. J. Metastable Nanocryst. Mater. 20–21, 594–598 (2004)

    Article  Google Scholar 

  29. M K. Surappa, E.W. Blank, J.C. Jaquet, Microstructural Approach to Deformation and Fracture of Cast Al–7Si–0.3Mg, in 3rd International Conference on Solidification Processing (Sheffield, UK, 1987), pp. 424–427

Download references

Acknowledgements

The authors would like to thank Amal Samuel for enhancing the quality of the images used in the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Appendices

Appendix 1

See Figure 14.

Figure 14
figure 14

(a) Temperature–time curve and first derivative of the A356 base alloy showing: (1) precipitation of α-Al dendrite network, (2) Al–Si eutectic reaction, (3) transformation of β-Fe to π-Fe phase, (4) precipitation of Mg2Si, (5) end of solidification. (b) Temperature–time curve and its first derivative obtained from the A356 alloy modified with about 100 ppm Sr.

Appendix 2

Morphology of the eutectic Si particles: effect of solutionizing time at 540 °C (see Figures 15, 16).

Figure 15
figure 15

Size and distribution of eutectic Si particles of unmodified A356 alloy: (a) As cast, (b) 10 h@540 °C, (c) 50 h@540 °C, (d) 100 h@540 °C.

Figure 16
figure 16

Size and distribution of eutectic Si particles of Sr-modified A356 alloy: (a) As cast, (b) 10 h@540 °C, (c) 50 h@540 °C, (d, e) 100 h@540 °C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharkawi, E.A., Abdelaziz, M.H., Doty, H.W. et al. Effect of β-Al5FeSi and π-Al8Mg3FeSi6 Phases on the Impact Toughness and Fractography of Al–Si–Mg-Based Alloys. Inter Metalcast 12, 148–163 (2018). https://doi.org/10.1007/s40962-017-0153-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0153-8

Keywords

Navigation