Skip to main content
Log in

Effect of loading condition and stress state on damage evolution of silicon particles in an Al-Si-Mg-Base cast alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Damage evolution of Si particles in a Sr modified cast A356(T6) Al alloy is quantitatively characterized as a function of strain under tension, compression, and torsion. The fraction of damaged Si particles, their size distributions, and orientation distribution of particle cracks are measured by image analysis and stereological techniques. Silicon particle cracking and debonding are the predominant damage modes. Particle debonding is observed only under externally applied tensile loads, whereas particle cracking is observed under all loading conditions. The relative contributions of Si particle debonding and fracture to the total damage strongly depend on stress state and temperature. For all loading conditions and stress states studied, the average size of damaged Si particles is considerably larger than the bulk average size. The rate of damage accumulation is different for different loading conditions. At a given strain level, Si particle damage is lowest under compression and highest under torsion. The anisotropy of the damage is highly dependent on the deformation path and stress state. Under uniaxial tension, the cracks in the broken Si particles are mostly perpendicular to the loading direction, whereas in the compression test specimens they are parallel to the loading direction. The Si particle cracks in the torsion and notch-tension test specimens do not exhibit preferred orientations. The quantitative microstructural data are used to test damage evolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Couper, A.E. Neeson, and J.R. Griffiths: Fat. Fract. Eng. Mater., 1990, vol. 13 (3), pp. 213–27.

    Article  Google Scholar 

  2. M.K. Surappa, E. Blank, and J.C. Jaquet: Scripta Metall., 1986, vol. 20, pp. 1281–86.

    Article  CAS  Google Scholar 

  3. K. Radhakrishnan and S. Seshan: Trans. Ind. Inst. Met., 1984, vol. 34, pp. 169–71.

    Google Scholar 

  4. A.M. Samuel and F.H. Samuel: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2359–72.

    CAS  Google Scholar 

  5. E.N. Pan, C.S. Lin, and C.R. Loper: Am. Foundrymen Soc. Trans., 1990, vol. 98, pp. 735–46.

    CAS  Google Scholar 

  6. R.E. Spear and G.R. Gardener: Am. Foundrymen Soc. Trans., 1963, vol. 71, pp. 209–15.

    Google Scholar 

  7. J.F. Major, A. Makinde, P.D. Lee, B. Chamberlain, T. Scappaticci, and D. Richman: Proc. Int. Congr. Expos. on Vehicle Suspension System Advancement, ASAE Publication, Detroit, MI, 1994, pp. 117–28.

    Google Scholar 

  8. Jien-Wei Yeh and Wen-Pin Liu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3558–68.

    Article  CAS  Google Scholar 

  9. J. Gurland and J. Plateau: Trans. ASM, 1963, vol. 56, pp. 442–52.

    CAS  Google Scholar 

  10. C.H. Caceres and J.R. Griffiths: Acta Mater., 1996, vol. 44, pp. 25–33.

    Article  CAS  Google Scholar 

  11. R. Doglione, J.L. Douziech, C. Berdin, and D. Francois: Mater. Sci. Forum, 1996, pp. 130–39.

  12. M.D. Dighe: Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, 1999.

    Google Scholar 

  13. M.F. Ashby: Phil. Mag., 1966, vol. 14, pp. 1157–78.

    CAS  Google Scholar 

  14. J.P. Hirth and W.D. Nix: Acta Metall., 1985, vol. 33, pp. 359–68.

    Article  CAS  Google Scholar 

  15. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  16. F.T. Lee, J.F. Major, and F.H. Samuel: Metall Mater. Trans. A, 1995, vol. 26A, pp. 1553–70.

    CAS  Google Scholar 

  17. M.F. Horstmeyer and A.M. Gokhale: Int. J. Solids Struct., 1999, vol. 36, pp. 5029–55.

    Article  Google Scholar 

  18. M.F. Horstemeyer, J. Lathrop, A.M. Gokhale, and M. Dighe: Theor. App. Fract. Mech., 2000, vol. 33, pp. 31–47.

    Article  CAS  Google Scholar 

  19. C.H. Caceres, C.J. Davidson, and J.R. Griffiths: Mater. Sci. Eng., 1995, vol. A197, pp. 268–78.

    Google Scholar 

  20. M.D. Dighe, A.M. Gokhale, and M.F. Horstemeyer: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 905–07.

    Google Scholar 

  21. M.D. Dighe, A.M. Gokhale, and M.F. Horstemeyer: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1725–31.

    Article  CAS  Google Scholar 

  22. E. Smith and J.J. Barnby: Met. Sci. J., 1967, vol. 1, p. 56.

    CAS  Google Scholar 

  23. F.A. McClintock: Ductility, ASM, Metals Park, OH, 1968.

    Google Scholar 

  24. C. Zener: Fract. Met., ASM, Metals Park, OH, 1948.

    Google Scholar 

  25. G.T. Hahn and A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–68.

    CAS  Google Scholar 

  26. T.B. Cox and J.R. Low: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    CAS  Google Scholar 

  27. T.C. Lindley, G. Oates, and C.E. Richards: Acta Metall., 1970, vol. 18, pp. 1127–36.

    Article  CAS  Google Scholar 

  28. W.A. Kawahara: Exp. Tech., 1990, March–April, pp. 58–60.

  29. S.S. Hecker, M.G. Stout, and D.T. Eash: Proc. Workshop on Plasticity of Metals at Finite Strains: Theory, Experiment, and Computation, E.H. Lee and R.L. Mallet, eds., Stanford University, Stanford, CA, 1982, pp. 162–201.

    Google Scholar 

  30. A. Tewari, M.D. Dighe, and A.M. Gokhale: Mater. Characterization, 1998, vol. 40, pp. 119–32.

    Article  CAS  Google Scholar 

  31. P. Louis and A.M. Gokhale: Acta Mater., 1996, vol. 44, pp. 1519–28.

    Article  CAS  Google Scholar 

  32. P. Louis and A.M. Gokhale: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1449–56.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dighe, M.D., Gokhale, A.M. & Horstemeyer, M.F. Effect of loading condition and stress state on damage evolution of silicon particles in an Al-Si-Mg-Base cast alloy. Metall Mater Trans A 33, 555–565 (2002). https://doi.org/10.1007/s11661-002-0117-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0117-2

Keywords

Navigation