Skip to main content
Log in

Development of a Mesophyll Protoplast-Based System for Gene Editing of Papaya

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Carica papaya L. is an economically significant crop in tropical and subtropical regions, with a gross production value of $6.2 × 109 in 2020. However, various biotic and abiotic stresses threaten crop productivity. To enhance stress resistance, genetic engineering and traditional breeding have been employed. Unfortunately, these methods are limited by the scarcity of innate disease resistance genes in the genome and the poor fertility of interspecific hybrids. Therefore, to circumvent these limitations, we developed a papaya protoplast-based gene editing system. By optimizing protoplast isolation, 28% higher yields were achieved from older (≥75 d) plants at 1.11 × 108 ± 0.069 protoplasts per gram-fresh-weight. Protoplast viability was 89.87 ± 2.02%,. We established an efficient genetic transfection method and verified proper expression, cellular function and localization of GFP and PDI-mCherry fusions in the protoplasts. Using preassembled CRISPR-Cas9 ribonucleoprotein complexes, we successfully edited a mutant GFP transgene, resulting in a frame-shift restoration efficiency of 27.88 ± 1.65%. Next, the CpPDS and CpMLO6 genes were targeted, creating knockouts in three different papaya cultivars. The average CpPDS mutant frequency obtained was 42.31 ± 1.90%, of which 31.25 ± 1.46% were frame-shift knockouts, while 11.05 ± 1.37% were in-frame protein variants. The average CpMLO6 mutant frequency was 16.20 ± 1.53%, of which 13.71 ± 1.67% were frame-shift knockouts and 2.50 ± 0.26% were in-frame variants. Taken together, a DNA-free CRISPR-Cas9 gene editing system was successfully demonstrated in papaya protoplasts on multiple target genes for use in papaya crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Adedeji OS, Naing AH, Kim CK (2020) Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tissue Organ Cult 141:571–581

    Article  Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotech 38:824–844

    Article  CAS  Google Scholar 

  • Arias RS, Dayan FE, Michel A, Howell JL, Scheffler BE (2006) Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnol J 4:263–273

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of Mlo Function. Mol Plant-Microbe Interact 21:30–39

    Article  CAS  PubMed  Google Scholar 

  • Boss WF, Mott RL (1980) Effects of Divalent Cations and Polyethylene Glycol on the Membrane Fluidity of Protoplast. Plant Physiol 66:835–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer SE, Chambers AH (2022) CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. J Hortic Sci Biotechnol 97:580–592

    Article  CAS  Google Scholar 

  • Brocklehurst K, Baines B, Kierstan M (1981) Papain and other constituents of Carica papaya L. Top Enzym Ferment Biotechnol 5:262–335

    CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van Der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Carlos-Hilario LR, Christopher DA (2015) Improved Agrobacterium-mediated transformation of Carica papaya cultivar ‘Kapoho’ from embryogenic cell suspension cultures. In Vitro Cellular Dev Biol Plant 51:580–587

    Article  CAS  Google Scholar 

  • Carrillo R, Christopher DA (2022) Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene. Plant Signal Behav 17(1):2098645

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Chiu W-l, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Cho EJ, Yuen CYL, Kang B-H, Ondzighi CA, Staehelin LA, Christopher DA (2011) Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 32:459–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocking EC (1972) Plant Cell Protoplasts-Isolation and Development. Annu Rev Plant Physiol 23:29–50

    Article  CAS  Google Scholar 

  • Cunningham B, Nelson S (2012) Powdery Mildew of Papaya in Hawaii. http://hdl.handle.net/10125/33214

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  CAS  PubMed  Google Scholar 

  • Dewitt MA, Corn JE, Carroll D (2017) Genome editing via delivery of Cas9 ribonucleoprotein. Methods 121-122:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: Regeneration of fertile plants. Proc Natl Acad Sci U S A 84:8434–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00056

  • Evans DA (1983) Agricultural Applications of Plant Protoplast Fusion. Bio-Technology 1:253–261

    Google Scholar 

  • Evans EA, Balen FH, Crane JH (2021) An overview of us papaya production, trade, and consumption. University of Florida IFAS Extension Pub. #FE914, pp 1–8

  • FAOSTAT (2020) Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QV

  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 System. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01649

  • Gumtow R, Wu D, Uchida J, Tian M (2018) A Phytophthora palmivora Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. Mol Plant-Microbe Interact 31:363–373

    Article  CAS  PubMed  Google Scholar 

  • Hasley JAR, Navet N, Tian M (2021) CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS One 16:e0253245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Mudgett M, Zhao Y (2022) Advances in gene editing without residual transgenes in plants. Plant Physiol 188:1757–1768

    Article  CAS  PubMed  Google Scholar 

  • Hewajulige IGN, Dhekney SA (2016) Papayas. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of Food and Health. Academic Press, Oxford, pp 209–212

    Chapter  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Wang Z, Cheng J, Zhao W, Li X, Wang H, Zhang Z, Sui X (2013) An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic 150:206–212

    Article  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna Jennifer A, Charpentier E (2012) A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao KN, Constabel F, Michayluk MR, Gamborg OL (1974) Plant Protoplast Fusion and Growth of Intergeneric Hybrid Cells. Planta 120:215–227

    Article  CAS  PubMed  Google Scholar 

  • Kao KN, Keller WA, Miller RA (1970) Cell division in newly formed cells from protoplasts of soybean. Exp Cell Res 62:338–340

    Article  CAS  PubMed  Google Scholar 

  • Kao KN, Michayluk MR (1974) A Method for High-frequency Intergeneric Fusion of Plant Protoplasts. Planta 115:355–367

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Alok A, Shivani KN, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Gen Funct Integr Gen 18:89–99

    Article  CAS  Google Scholar 

  • Keller WA, Melchers G (1973) The Effect of High pH and Calcium on Tobacco Leaf Protoplast Fusion. Zeitschrift für Naturforschung C A J Biosci 28:737–741

    Article  CAS  Google Scholar 

  • Kim H, Choi J, Won K-H (2020) A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol 20:449. https://doi.org/10.1186/s12870-020-02665-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konovalova LN, Strelnikova SR, Zlobin NE, Kharchenko PN, Komakhin RA (2021) Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars. Appl Biochem Microbiol 57:800–807

    Article  CAS  Google Scholar 

  • Krens FA, Wullems GJ, Schilperoort RA (1983) Transformation of Plant Protoplasts in Vitro. Springer, New York, Boston, MA, pp 387–408

    Google Scholar 

  • Krishna L, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya L.). Indian J Nat Prod Resour 7:364–373

    Google Scholar 

  • Lamour K (2013) Phytophthora a global perspective. CAB International; Cambridge, Mass

    Book  Google Scholar 

  • Larkin PJ (1976) Purification and viability determinations of plant protoplasts. Planta 128:213–216

    Article  CAS  PubMed  Google Scholar 

  • Le Fevre R, O’Boyle B, Moscou MJ, Schornack S (2016) Colonization of Barley by the Broad-Host Hemibiotrophic Pathogen Phytophthora palmivora Uncovers a Leaf Development–Dependent Involvement of Mlo. Mol Plant-Microbe Interact 29:385–395

    Article  PubMed  Google Scholar 

  • Lee MH, Lee J, Choi SA, Kim Y-S, Koo O, Choi SH, Ahn WS, Jie EY, Kim SW (2020) Efficient genome editing using CRISPR–Cas9 RNP delivery into cabbage protoplasts via electro-transfection. Plant Biotechnol Rep 14:695–702

    Article  Google Scholar 

  • Li J, Liao X, Zhou S, Liu S, Jiang L, Wang G (2018) Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty’. In Vitro Cell Dev Biol Plant 54:87–93

    Article  CAS  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-S, Hsu C-T, Yang L-H, Lee L-Y, Fu J-Y, Cheng Q-W, Wu F-H, Hsiao HCW, Zhang Y, Zhang R, Chang W-J, Yu C-T, Wang W, Liao L-J, Gelvin SB, Shih M-C (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CS, Hsu CT, Yuan YH, Zheng PX, Wu FH, Cheng QW, Wu YL, Wu TL, Lin S, Yue JJ, Cheng YH, Lin SI, Shih MC, Sheen J, Lin YC (2022) DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiol 188:1917–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Merrick P, Zhang Z, Ji C, Yang B, Fei S-Z (2018) Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum, L.) using CRISPR/Cas9. Plant Biotechnol J 16:381–393

    Article  CAS  PubMed  Google Scholar 

  • Locatelli F, Vannini C, Magnani E, Coraggio I, Bracale M (2003) Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Rep 21:865–871

    Article  CAS  PubMed  Google Scholar 

  • Maas C, Werr W (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8:148–151

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01904

  • Manshardt RM, Wenslaff TF (1989) Interspecific Hybridization of Papaya with Other Carica Species. J Am Soc Hortic Sci 114:689–694

    Article  Google Scholar 

  • Matchett-Oates L, Mohamaden E, Spangenberg GC, Cogan NOI (2021) Development of a robust transient expression screening system in protoplasts of Cannabis. In Vitro Cellular & Developmental Biology - Plant. https://doi.org/10.1007/s11627-021-10178-0

  • Melchers G, Sacristán MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsb Res Commun 43:203–218

    Article  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-Free Genome Editing: Past, Present and Future. Front Plant Sci 9:1957

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Moore PH (2014) Genetics and Genomics of Papaya. Springer New York, New York, NY, USA

    Book  Google Scholar 

  • Murata T, Fukuoka H, Kishimoto M (1994) Plant Regeneration from Mesophyll and Cell Suspension Protoplasts of Sweet Potato, Ipomoea batatas (L.) Lam. Japan J Breeding 44:35–40

    Article  Google Scholar 

  • Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018) DNA-Free Genome Editing of Brassica oleracea and B. rapa Protoplasts Using CRISPR-Cas9 Ribonucleoprotein Complexes. Front Plant Sci 9:1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS (2019) Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00110

  • Nagata T, Takebe I (1970) Cell Wall Regeneration and Cell Division in Isolated Tobacco Mesophyll Protoplasts. Planta 92:301–308

    Article  CAS  PubMed  Google Scholar 

  • Nanjareddy K, Arthikala M-K, Blanco L, Arellano ES, Lara M (2016) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 16:53. https://doi.org/10.1186/s12896-016-0283-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navet N, Tian M (2020) Efficient targeted mutagenesis in allotetraploid sweet basil by CRISPR/Cas9. Plant Direct 4(6):e00233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrutiu I, Dewulf J, Pietrzak M, Botterman J, Rietveld E, Wurzer-Figurelli EM, Ye D, Jacobs M (1990) Hybrid genes in the analysis of transformation conditions: II. Transient expression vs stable transformation—analysis of parameters influencing gene expression levels and transformation efficiency. Physiol Plant 79:197–205

    Article  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Nelson S (2008) Phytophthora Blight of Papaya. http://hdl.handle.net/10125/12413

  • Newell CA, Luu HT (1985) Protoplast culture and plant regeneration in Glycine canescens F.J. Herm. Plant Cell Tissue Organ Cult 4:145–149

    Article  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel K-H, Hückelhoven R (2004) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    Article  Google Scholar 

  • Park S-C, Park S, Jeong YJ, Lee SB, Pyun JW, Kim S, Kim TH, Kim SW, Jeong JC, Kim CY (2019) DNA-free mutagenesis of GIGANTEA in Brassica oleracea var. capitata using CRISPR/Cas9 ribonucleoprotein complexes. Plant Biotechnol Rep 13:483–489

    Article  Google Scholar 

  • Parray ZA, Hassan MI, Ahmad F, Islam A (2020) Amphiphilic nature of polyethylene glycols and their role in medical research. Polym Test 82:106316

    Article  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessina S, Pavan S, Catalano D, Gallotta A, Visser RG, Bai Y, Malnoy M, Schouten HJ (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15:618

    Article  PubMed  PubMed Central  Google Scholar 

  • Poddar S, Tanaka J, Cate JHD, Staskawicz B, Cho M-J (2020) Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods 16:151. https://doi.org/10.1186/s13007-020-00692-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter BW, Christopher DA, Zhu YJ (2014) Genomics of Papaya Disease Resistance. In: Ming R, Moore PH (eds) Genetics and Genomics of Papaya. Springer New York, New York, NY, pp 277–307

    Chapter  Google Scholar 

  • Sangra A, Shahin L, Dhir SK (2019) Optimization of Isolation and Culture of Protoplasts in Alfalfa ( Medicago sativa ) Cultivar Regen-SY. Am J Plant Sci 10:1206–1219

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-Dependent Protein Kinases and Stress Signal Transduction in Plants. Science 274:1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Sidorov V, Wang D, Nagy ED, Armstrong C, Beach S, Zhang Y, Groat J, Yang S, Yang P, Gilbertson L (2021) Heritable DNA-free genome editing of canola (Brassica napus L.) using PEG-mediated transfection of isolated protoplasts. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-021-10236-7

  • Sihachakr D, Haicour R, Serraf I, Barrientos E, Herbreteau C, Ducreux G, Rossignol L, Souvannavong V (1988) Electrofusion for the production of somatic hybrid plants of Solanum melongena L. and Solanum khasianum C.B. Clark Plant Sci 57:215–223

    Article  Google Scholar 

  • Sivanandhan G, Bae S, Sung C, Choi S-R, Lee G-J, Lim Y-P (2021) Optimization of Protoplast Isolation from Leaf Mesophylls of Chinese Cabbage (Brassica rapa ssp. pekinensis) and Subsequent Transfection with a Binary Vector. Plants 10:2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  • Subburaj S, Chung SJ, Lee C, Ryu S-M, Kim DH, Kim J-S, Bae S, Lee G-J (2016) Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Takebe I, Otsuki Y (1969) Infection of Tobacco Mesophyll Protoplasts by Tobacco Mosaic Virus. Proc Natl Acad Sci U S A 64:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • van Schie CCN, Takken FLW (2014) Susceptibility Genes 101: How to Be a Good Host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  Google Scholar 

  • Vasil IK, Vasil V (1972) Totipotency and Embryogenesis in Plant Cell and Tissue Cultures [with Discussion]. In Vitro 8:117–127

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu J-K (2017) Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J-Z, Liu Q, Geng X-S, Li K-M, Luo L-J, Liu J-P (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 17:29–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, Hu C, Huo H, Chen K, Yi G (2020) Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol 20:1

    Article  Google Scholar 

  • Wu Z-D, Hu X, Zan F-G, Pan Y-B, Burner DM, Luo Z-Y, Liu J-Y, Zhao L-P, Yao L, Zhao Y, Liu X-L, Xia H-M, Yang K, Zhao J, Zhao P-F, Qin W, Chen X-K, Wu C-W (2021) Subcellular Localization of the D27 Protein in Sugarcane (Saccharum spp. Hybrids) Using an Optimized Protoplast Isolation, Purification, and Transient Gene Expression Protocol. Sugar Tech 23:316–325

    Article  CAS  Google Scholar 

  • Xu X-f, Zhu H-y, Ren Y-f, Feng C, Ye Z-h, Cai H-m, Wan X-c, Peng C-y (2021) Efficient isolation and purification of tissue-specific protoplasts from tea plants (Camellia sinensis (L.) O. Kuntze). Plant Methods 17:84–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yuen C, Matsumoto K, Christopher D (2013) Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase. Biomolecules 3:848–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuen CYL, Shek R, Kang B-H, Matsumoto K, Cho EJ, Christopher DA (2016) Arabidopsis protein disulfide isomerase-8 is a type I endoplasmic reticulum transmembrane protein with thiol-disulfide oxidase activity. BMC Plant Biol 16:1–15

    Article  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molec Breed 39:1

    Article  Google Scholar 

  • Zhang J, Shen W, Yan P, Li X, Zhou P (2011) Factors that influence the yield and viability of protoplasts from Carica papaya L. African J Biotech 10:5137–5142

    Google Scholar 

  • Zhang S, Shen J, Li D, Cheng Y (2021a) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11:614–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Iaffaldano B, Qi Y (2021b) CRISPR ribonucleoprotein-mediated genetic engineering in plants. Plant Commun 2:100168–100168

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019b) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007a) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Agbayani R, Nishijima W, Moore P (2007b) Characterization of disease resistance of Carica papaya to Phytophthora. Acta horticulturae, 10.17660/ActaHortic.2007.740.32:265-269

  • Zimmermann U, Scheurich P (1981) High Frequency Fusion of Plant Protoplasts by Electric Fields. Planta 151:26–32

    Article  CAS  PubMed  Google Scholar 

  • Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, Payraudeau S, Rasmussen JJ, Rohr J, Scharmüller A, Smalling K, Stehle S, Schulz R, Schäfer RB (2019) Fungicides: An Overlooked Pesticide Class? Environ Sci Technol 53:3347–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bing Yang for the GFPm construct and advice on its use, and Mrs. Tina Weatherby for expert advice on microscopy.

Dr. Bing Yang

Bond Life Sciences Center

Division of Plant Sciences

University of Missouri

1201 Rollins Street, Columbia, MO 65211

Tina Weatherby

Biological Electron Microscope Facility

Life Sciences Building

University of Hawai’i at Mānoa

1800 East-West Road, Honolulu, HI 96822

Funding

This work was supported by the University of Hawai’i at Mānoa and the USDA-NIFA-AFRI award 2020-67013-31549.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Christopher.

Additional information

Responsible Editor: Yong Eui Choi

Supplementary information

ESM 1

Supplemental file 1: Phylogenetic analysis of the candidate S-gene MLO-like protein homologs in papaya. (PDF 392 kb)

ESM 2

Supplemental file 2: The secondary structure of selected sgRNA candidates targeting Carica papaya endogenous genes, CpPDS and CpMLO6. (PDF 379 kb)

ESM 3

Supplemental file 3: In vitro DNA cleavage activity of CpPDS-sgRNA16 and CpMLO6-sgRNA254. (PDF 247 kb)

ESM 4

Supplemental file 4: Table 1: Indels generated during initial DNA-free CRISPR-Cas9 targeted gene editing of CpPDS in papaya cv. Solo Sunrise. Table 2: Indels generated during replicate DNA-free CRISPR-Cas9 targeted gene editing of CpPDS in papaya cv. Solo Sunrise. Table 3: Indels generated during DNA-free CRISPR-Cas9 targeted gene editing of CpPDS in papaya cv. Solo Sunset. Table 4: Indels generated during DNA-free CRISPR-Cas9 targeted gene editing of CpPDS in papaya cv. Solo Kapoho. (PDF 2013 kb)

ESM 5

Supplemental file 5: Summary of DNA-free CRISPR-Cas9 targeted gene editing of CpPDS and CpMLO6 in papaya cultivars Solo Sunrise, Sunset, and Kapoho. (PDF 206 kb)

ESM 6

Supplemental file 6: Table 5: Indels generated during initial DNA-free CRISPR-Cas9 targeted gene editing of CpMLO6 in papaya cv. Solo Sunrise. Table 6: Indels generated during replicate DNA-free CRISPR-Cas9 targeted gene editing of CpMLO6 in papaya cv. Solo Sunrise. Table 7: Indels generated during DNA-free CRISPR-Cas9 targeted gene editing of CpMLO6 in papaya cv. Solo Sunset. Table 8: Indels generated during DNA-free CRISPR-Cas9 targeted gene editing of CpMLO6 in papaya cv. Solo Kapoho. (PDF 1700 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, M.J., Hasley, J., Tian, M. et al. Development of a Mesophyll Protoplast-Based System for Gene Editing of Papaya. In Vitro Cell.Dev.Biol.-Plant 59, 517–535 (2023). https://doi.org/10.1007/s11627-023-10373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-023-10373-1

Keywords

Navigation