Skip to main content
Log in

Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, we sought to optimize the isolation of protoplasts from chrysanthemums by manipulating the mannitol and cellulase levels, the incubation period, and the purification method, followed by the conversion of the protoplasts into calli and shoots. A high protoplast yield was achieved using 0.5 M mannitol, 1.5% cellulase, and a 4 h incubation period. Cell wall regeneration was observed after 3 days, with the first cell division occurring approximately 4–5 days after culturing. The addition of sucrose to the culture media was more beneficial than glucose; in sucrose media the protoplasts grew more rapidly and successfully reached the colony and microcalli stage. The addition of activated charcoal to the culture improved colony and microcalli formation. Greater proliferation of microcalli was also achieved using solid Murashige & Skoog (MS) media supplemented with 1 mg l−1 6-Benzylaminopurine (BA) and 2 mg l−1 Naphthaleneacetic acid (NAA). The calli produced shoots THE on media supplemented with 2 mg l− 1 BA and 0.5 mg l−1 NAA. These findings could facilitate further chrysanthemum protoplast-based research.

Key message

The regeneration of chrysanthemum protoplasts into whole plants is difficult due to the recalcitrant nature of these plants and because of their genotype-dependent response. This study is appropriate for protoplast isolation and callus formation of Chrysanthemum cv. White ND, and it also achieved regenerating chrysanthemum protoplasts-derived calli into whole plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AC:

Activated charcoal

BA:

6-Benzylaminopurine

CM:

Culture media

CPW:

Cell and protoplast washing solution

FDA:

Fluorescein diacetate

FW:

Fresh weight

MES:

2-(N-morpholino)ethanesulfonic acid

MS:

Murashige and Skoog

NAA:

Naphthaleneacetic acid

PGR:

Plant growth regulator

References

  • Afshari R, Angoshtari R, Kalantari S (2011) Effects of light and different plant growth regulators on induction of callus growth in rapeseed (‘Brassica napus L.‘) genotypes. Plant Omics 4(2):60

    Google Scholar 

  • Anderson N, Gesick E (2004) Phenotypic markers for selection of winter hardy garden chrysanthemum (Dendranthema × grandiflora Tzvelv.) genotypes. Sci Hortic-Amsterdam 101(1–2):153–167

    Google Scholar 

  • Annadana S, Rademaker W, Ramanna M, Udayakumar M, De Jong J (2000) Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration protocols for chrysanthemum. Planr Cell Tissue Organ Cult 62(1):47

    CAS  Google Scholar 

  • Bertini E, Tornielli GB, Pezzotti M, Zenoni S (2019) Regeneration of plants from embryogenic callus-derived protoplasts of Garganega and Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell Tissue Organ Cult (PCTOC) 138:239

    CAS  Google Scholar 

  • Carlberg I, Glimelius K, Eriksson T (1983) Improved culture ability of potato protoplasts by use of activated charcoal. Plant Cell Rep 2(5):223–225

    CAS  PubMed  Google Scholar 

  • Cha OK, Lee J, Lee HS, Lee H (2019) Optimized protoplast isolation and establishment of transient gene expression system for the Antarctic flowering plant Colobanthus quitensis (Kunth) Bartl. Plant Cell Tissue Organ Cult (PCTOC) 138(3):603–607

    CAS  Google Scholar 

  • Duquenne B, Eeckhaut T, Werbrouck S, Van Huylenbroeck J (2007) Effect of enzyme concentrations on protoplast isolation and protoplast culture of Spathiphyllum and Anthurium. Plant Cell Tissue Organ Cult 91(2):165–173

    CAS  Google Scholar 

  • Eeckhaut T, Van Huylenbroeck J (2011) Development of an optimal culture system for callogenesis of Chrysanthemum indicum protoplasts. Acta Physiol Plant 33(4):1547–1551. https://doi.org/10.1007/s11738-010-0660-1

    Google Scholar 

  • Endo M, Fujii N, Fujita S, Inada I (1997) Improvement of plating efficiency on the mesophyll protoplast culture of ChrysanthemumDendranthema×grandiflorum(Ram.) Kitam. Plant Biotechnol 14(1):81–83. https://doi.org/10.5511/plantbiotechnology.14.81

    CAS  Google Scholar 

  • Fujii Y, Shimizu K (1990) Callus formation from mesophyll protoplasts of pyrethrum (< i > Chrysanthemum coccineum). Plant Tissue Cult Lett 7(2):111–113. https://doi.org/10.5511/plantbiotechnology1984.7.111

    Google Scholar 

  • Furuta H, Shinoyama H, Nomura Y, Maeda M, Makara K (2004) Production of intergeneric somatic hybrids of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] and wormwood (Artemisia sieversiana J. F. Ehrh. ex. Willd) with rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci 166(3):695–702. https://doi.org/10.1016/j.plantsci.2003.11.007

    CAS  Google Scholar 

  • Godo T, Matsui K, Kida T, Mii M (1996) Effect of sugar type on the efficiency of plant regeneration from protoplasts isolated from shoot tip-derived meristematic nodular cell clumps of Lilium x formolongi hort. Plant Cell Rep 15(6):401–404

    CAS  PubMed  Google Scholar 

  • Guo Y, Bai J, Zhang Z (2007) Plant regeneration from embryogenic suspension-derived protoplasts of ginger (Zingiber officinale Rosc.). Plant Cell Tissue Organ Cult 89(2–3):151–157

    Google Scholar 

  • Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non-branching lines induced by introducing Ls-like cDNA into Chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitamura)“Shuho-no-chikara.” Sci Hortic-Amsterdam 115(1):70–75

    CAS  Google Scholar 

  • Hodson de Jaramillo E, Forero A, Cancino G, Moreno AM, Monsalve LE, Acero W (2008) In vitro regeneration of three chrysanthemum (Dendrathema grandiflora) varieties” via” organogenesis and somatic embryogenesis. Univ Sci 13(2):118–127

    CAS  Google Scholar 

  • Hoshino Y, Nakano M, Mii M (1995) Plant regeneration from cell suspension-derived protoplasts of Saintpaulia ionantha Wendl. Plant Cell Rep 14(6):341–344. https://doi.org/10.1007/bf00238593

    CAS  PubMed  Google Scholar 

  • Huh YJ, Han BH, Park SK, Lee SY, Kil MJ, Pak CH (2013) Inhibition of chrysanthemum axillary buds via transformation with the antisense tomato lateral suppressor gene is season dependent. Horticult Environ Biotechnol 54(3):280–287

    CAS  Google Scholar 

  • Kao K, Michayluk M (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126(2):105–110

    CAS  PubMed  Google Scholar 

  • Kiełkowska A, Adamus A (2019) Peptide growth factor phytosulfokine-α stimulates cell divisions and enhances regeneration from B. oleracea var. capitata L. Protoplast Culture. J Plant Growth Regul 38(3):931–944

    Google Scholar 

  • Kim SJ, Lee CH, Kim J, Kim KS (2014) Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Sci Hortic-Amsterdam 175:278–289. https://doi.org/10.1016/j.scienta.2014.06.018

    Google Scholar 

  • Koetle MJ, Finnie JF, Balázs E, Van Staden J (2015) A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S Afr J Bot 98:37–44. https://doi.org/10.1016/j.sajb.2015.02.001

    CAS  Google Scholar 

  • Kumar S, Kumar S, Negi SP, Kanwar JK (2008) In vitro selection and regeneration of chrysanthemum (Dendranthema grandiflorum Tzelev) plants resistant to culture filtrate of Septoria obesa Syd. In Vitro Cell Dev Biol Plant 44(6):474–479. https://doi.org/10.1007/s11627-008-9131-4

    Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M, Mii M (1995) Plant regeneration from mesophyll protoplasts of lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell Tissue Organ Cult 43(1):59–65. https://doi.org/10.1007/bf00042672

    Google Scholar 

  • Lee CH, Kim KS (2000) Genetic diversity of Chrysanthemum zawadskii Herb. and the related groups in Korea using RAPDs. J Kor Soc Hort Sci 41:230–236

    CAS  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim K-B, Kwon SJ, Lee SI, Hwang Y-J, Naing AH (2012) Influence of genotype, explant source, and gelling agent on in vitro shoot regeneration of chrysanthemum. Hortic Environ Biotechnol 53(4):329–335

    Google Scholar 

  • Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HCW, Zhang Y, Zhang R (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16(7):1295–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay GC, Ledger SE (1993) A protoplast to plant system for the chrysanthemum Dendranthema zawadskii x D. grandiflora. Plant Cell Rep 12(5):278–280. https://doi.org/10.1007/bf00237135

    CAS  PubMed  Google Scholar 

  • Mani T, Senthil K (2011) Multiplication of Chrysanthemum through somatic embryogenesis. Asian J Pharm Technol 1(1):13–16

    Google Scholar 

  • Menczel L, Nagy F, Kiss ZR, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance to N. tabacum plastids. Theor Appl Genet 59(3):191–195. https://doi.org/10.1007/bf00264975

    CAS  PubMed  Google Scholar 

  • Meyer L, Serek M, Winkelmann T (2009) Protoplast isolation and plant regeneration of different genotypes of Petunia and Calibrachoa. Plant Cell Tissue Organ Cult (PCTOC) 99(1):27–34

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Naing AH, Jeon SM, Han JS, Lim SH, Lim KB, Kim CK (2014) Factors influencing in vitro shoot regeneration from leaf segments of Chrysanthemum. CR Biol 337:383–390

    Google Scholar 

  • Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiol Plant 38(2):38

    Google Scholar 

  • Naing AH, Park KI, Chung MY, Lim KB, Kim CK (2016) Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma Brazil J Bot 39(4):975–984

    Google Scholar 

  • Petty LM, Harberd NP, Carré IA, Thomas B, Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci 164(2):175–182

    CAS  Google Scholar 

  • Raj SK, Kumar S, Choudhari S, Verma DK (2009) Biological and molecular characterization of three isolates of Tomato aspermy virus infecting chrysanthemums in India. J Phytopathol 157(2):117–125

    CAS  Google Scholar 

  • Sauvadet M-A, Brochard P, Boccon-Gibod J (1990) A protoplast-to-plant system in chrysanthemum: differential responses among several commercial clones. Plant Cell Rep 8(11):692–695. https://doi.org/10.1007/bf00269995

    CAS  PubMed  Google Scholar 

  • Shinoyama H, Kazuma T, Komano M, NOMURA Y, TSUCHIYA T (2002) An efficient transformation system in Chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] for stable and non-chimeric expression of Foreign Genes. Plant Biotechnol 19(5):335–343

    CAS  Google Scholar 

  • Su J, Zhang F, Yang X, Feng Y, Yang X, Wu Y, Guan Z, Fang W, Chen F (2017) Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica 213(2):42

    Google Scholar 

  • Sun B, Yuan Q, Zheng H, Liang S, Jiang M, Wang M-M, Chen Q, Li M-Y, Zhang Y, Luo Y (2019) An efficient and economical protocol for isolating, purifying and peg-mediated transient gene expression of Chinese Kale hypocotyl protoplasts. Plants 8(10):385

    CAS  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young J, Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tudses N, Premjet S, Premjet D (2014) Optimal conditions for high-yield protoplast isolations of Jatropha curcas L and Ricinus communis L. Am-Eurasian J Agric Environ Sci 14:221–230

    Google Scholar 

  • Wann SR, Veazey RL, Kaphammer J (1997) Activated charcoal does not catalyze sucrose hydrolysis in tissue culture media during autoclaving. Plant Cell Tissue Organ Cult 50(3):221–224. https://doi.org/10.1023/a:1005947008637

    CAS  Google Scholar 

  • Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S (2009) Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods 5(1):16

    PubMed  PubMed Central  Google Scholar 

  • Xue J-p, Yu M, Zhang A-m (2003) Studies on callus induced from leaves and plantlets regeneration of the traditional Chinese medicine Chrysanthemum morifolium. Zhongguo Zhong Yao Za Zhi 28(3):213–216

    PubMed  Google Scholar 

  • Zhang M, Huang H, Wang Q, Dai S (2018) Cross breeding new cultivars of early-flowering multiflora chrysanthemum based on mathematical analysis. HortScience 53(4):421–426

    Google Scholar 

  • Zhang Q, Xing H-L, Wang Z-P, Zhang H-Y, Yang F, Wang X-C, Chen Q-J (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96(4–5):445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang B, Zhu L (2005) Conditioned culture for protoplasts isolated from chrysanthemum: an efficient approach. Colloids Surf B 45(3):113–119. https://doi.org/10.1016/j.colsurfb.2005.07.012

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the New Breeding Technology Program (Project no. PJ01485801), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

AHN and ASO designed the experiment. ASO conducted the experiment. ASO wrote the manuscript draft. AHN advised the experiment and revised the manuscript. CKK supervised the project.

Corresponding authors

Correspondence to Aung Htay Naing or Chang Kil Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Communicated by M. I. Beruto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adedeji, O.S., Naing, A.H. & Kim, C.K. Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tiss Organ Cult 141, 571–581 (2020). https://doi.org/10.1007/s11240-020-01816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01816-3

Keywords

Navigation