Skip to main content
Log in

Improved Agrobacterium-mediated transformation of Carica papaya cultivar ‘Kapoho’ from embryogenic cell suspension cultures

  • Protocols\\/Methods
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The adoption of Agrobacterium-mediated transformation to agronomically important Carica papaya cultivars and genotypes, such as “Kapoho’, has been challenging. To address this problem, an alternative transformation protocol was developed for papaya using embryogenic suspension-derived cultures. The ability of the tissues (cultivar ‘Kapoho’) to regenerate plantlets from these cultures was demonstrated for both transgenic lines and untransformed controls. Suspension-derived cultures at the young globular calli stage contained embryos highly receptive to Agrobacterium infection and did not require the problematic wounding treatments inherent in other protocols. The optimum parameters selected to obtain transgenic calli were as follows: 1-d co-cultivation with Agrobacterium, the cell density used for transformation was A600 of 0.005, and elimination of Agrobacterium post-transformation was done using 250 mg/L carbenicillin and cefotaxime. Putative transgenic calli were confirmed positive for the presence of the eGFP transgene, Cp45 promoter sequence, and hygromycin resistance gene (hptII) using PCR. The presence of eGFP messenger RNA (mRNA) and protein were detected using reverse transcription PCR (RT-PCR) and Western blot analysis, respectively. Visualization of qualitative eGFP fluorescence in roots, stems, and leaves further confirmed the expression of Cp45:eGFP fusion in the transformed papaya plantlets. This technique serves as an alternative and efficient method to generate transgenic plants in a simple laboratory setup that facilitates Agrobacterium-mediated transformation of previously difficult papaya cultivars and genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Agrios G (1978) Plant pathology, 2nd edn. Academic, New York

    Google Scholar 

  • Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Reps 15:1–7

    Article  CAS  Google Scholar 

  • Carlos-Hilario L, Porter BW, Zhu YJ, Christopher DA (2014) Identification and characterization of papaya (Carica papaya, L.) promoters by heterologous expression in Arabidopsis thaliana. Trop Plant Biol 7:85–99

    Article  CAS  Google Scholar 

  • Chan MT, Lee TM, Chang HH (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33:377–383

    Google Scholar 

  • De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsono DL, Perez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol Apl 14:169–174

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Sansonov DL, de la Riva GA, Selman-Housein G (1998) Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

  • FAO (2005) FAOSTAT database http://www.fao.org.com

  • Fitch MMM, Manshardt R, Gonzalves D, Slingtom J, Sanford J (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotechnol 10:1466–1472

    Article  CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from agrobacterium-mediated transformation of somatic embryos. Plant Cell Reps 12:245–249

    CAS  Google Scholar 

  • Fuentes G, Santamaria J (2014) Papaya (Carica papaya, L.) Origin, domestication and production. In: Ming R, Moore PH (eds) Genetics and Genomics of Papaya. Springer Science and Business Media, New York

    Google Scholar 

  • Gonsalves D (2014) Hawaii’s Transgenic Papaya Story 1978–2012: a personal account. In: Ming R, Moore PH (eds) Genetics and Genomics of Papaya. Springer Science and Business Media, New York

    Google Scholar 

  • Gonzalves D, Ferreira S, Manshardt R, Fitch M, Slingtom J (1998) Transgenic virus resistant papaya: new hope for the control of papaya ringspot virus in Hawaii. APSNET feature story for September 1998 on world wide web. http://www.apsnet.org/education/feature/papaya/Top.htm

  • Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci U S A 94:11726–11730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez M, Cabrera-Ponce JL, Fragoso G, Lopez-Casillas F, Guevara-Garcıa A, Rosas G, Leon-Ramırez C, Juarez P, Sanchez-Garcıa G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective anti-cysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260

    Article  CAS  PubMed  Google Scholar 

  • Hudson ME, Gunn SP (2008) Statistics of Hawaii agriculture 2007. NASDA (USDA, NASS and HDOA, ADD). pp 9

  • Joyce P, Hermann S, O’Connell A, Dinh Q, Shumbe L, Lakshmanan P (2014) Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotechnol J 12:411–24

    Article  CAS  PubMed  Google Scholar 

  • Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C (2007) A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci 93:770–772

    CAS  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten TM, Sanford JC (1988a) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci U S A 85:4305–4309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein TM, Gradziel ME, Fromm M, Sanford JC (1988b) Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Biotechnology 6:559–563

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laurena AC, Magdalita PM, Hidalgo MSP, Villegas VN, Mendoza EMT, Botella JR (2002) Cloning and molecular characterization of ripening-related ACC synthase from papaya fruit (Carica papaya L.). Proceedings of International Symposium on Tropical and Subtropical Fruits (R Drew, ed). Acta Hort 575:163–169

    Article  CAS  Google Scholar 

  • Martínez-García JF, Monte E, Quail PH (1999) A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J 20:251–257

    Article  PubMed  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu JY (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337–347

    Article  CAS  PubMed  Google Scholar 

  • Mendoza EMT, Laurena AC, Botella JR (2008) Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14:423–462

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pang SZ, Sanford JC (1988) Agrobacterium-mediated gene transfer in papaya. J Am Soc Hortic Sci 113:287–291

    CAS  Google Scholar 

  • Prinsen E, Bytebier B, Hernalsteens JP, De Greef J, Van Onkelen H (1990) Functional expression of Agrobacterium tumefaciens T-DNA onco-genes in Asparagus crown gall tissues. Plant Cell Physiol 31:69–75

    CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L. Biotechnology 8:33–38

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells of tissues using particle bombardment process. Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Smith R, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer JJ (1993) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246

    Article  CAS  Google Scholar 

  • Zhang G-L, Zhou Z, Guo A-P, Shen W-T, Li X-Y (2003) An initial study of transgenic Carica papaya used as a kind of vaccine for anti-tuberculosis. Acta Bot Yunnanica 2:223–229

    Google Scholar 

  • Zhu YJ, Fitch MM, Moore PH (2006) Papaya (Carica papaya L.). In: Wang K (ed) Methods in Molecular Biology. Humana Press Inc, Totowa

    Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by a grant from the USDA-CSREES and the Hawaii Department of Agriculture Award No. 21161 and the Monsanto Student Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Christopher.

Additional information

Editor: Ewen Mullins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlos-Hilario, L.R., Christopher, D.A. Improved Agrobacterium-mediated transformation of Carica papaya cultivar ‘Kapoho’ from embryogenic cell suspension cultures. In Vitro Cell.Dev.Biol.-Plant 51, 580–587 (2015). https://doi.org/10.1007/s11627-015-9719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9719-4

Keywords

Navigation