Skip to main content
Log in

Advanced nickel-based composite materials for supercapacitor electrodes

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the contemporary era of technological advancement, the escalating energy consumption paralleling enhanced living standards necessitates sustainable and eco-friendly energy solutions. Supercapacitors (SCs), lauded for their high capacitance and minimal environmental impact, have emerged as a focal point in this pursuit. Central to SCs’ efficacy are the electrode materials, with nickel-based compounds gaining prominence due to their high theoretical capacitance, affordability, ecological compatibility, ease of synthesis, and chemical stability. Despite these merits, challenges such as inadequate rate capability and cycling property impede their broader applications. This review summarizes the latest advancements in nickel-based composite materials for SC electrodes. It comprehensively discusses their characteristics, fabrication techniques, morphological attributes, and strategies for performance enhancement. The review also analytically explores the diverse electrochemical properties of SCs, offering insights into the underlying causes. Concluding with a discussion on prevailing challenges and potential resolutions, it anticipates future directions in nickel-based supercapacitor electrode material development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher. The corresponding author declares that all the data and materials are available.

References

  1. Patil SJ, Lokhande AC, Park JS, Kim JH, Kim YB, Choi BC, Park SH, Jung SH, Lee DW (2018) Towards high performance unique microstructures of Co9S8//CoFe2O4 for asymmetric supercapacitor. J Ind Eng Chem 61:206–215

    Article  CAS  Google Scholar 

  2. Masias A, Marcicki J, Paxton WA (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 6:621–630

    Article  CAS  Google Scholar 

  3. Wang F, Gao H, Niu ZY, Zheng YP, Chuai MY, Xu JN (2023) Engineering molecular regulation for SiOx with long-term stable cycle and high Coulombic efficiency as lithium-ion battery anodes. Rare Met 43:588–598

  4. Cai Y, Liu H, Li H, Sun Q, Wang X, Zhu F, Li Z, Kim J-K, Huang Z-D (2023) Strong coordination interaction in amorphous Sn-Ti-ethylene glycol compound for stable Li-ion storage. Energy Mater Devices 1(2):9370013

  5. Wang X, Wang Y, Wu M, Fang R, Yang X, Wang D-W (2022) Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2:16–29

  6. Pu XJ, Wang HM, Zhao D, Yang HX, Ai XP, Cao SN, Chen ZX, Cao YL (2019) Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 15(32):1805427

    Article  Google Scholar 

  7. Luo J, Xiang SL, Han DY, Liu A, Cunha J, Li GY, Hou ZH, Yin H (2023) Interface engineering of Co9S8/SnS heterostructure as a high-performance anode for lithium/sodium-ion batteries. Rare Met 43:612–623

  8. Rehman J, Fan XF, Laref A, Zheng WT (2020) Adsorption and diffusion of potassium on 2D SnC sheets for potential high-performance anodic applications of potassium-ion batteries. ChemElectroChem 7:3832–3838

    Article  CAS  Google Scholar 

  9. Yang QR, Fan QN, Peng J, Chou SL, Liu HK, Wang JZ (2023) Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 3:2023013

    CAS  Google Scholar 

  10. Wang M, Li Y, Yao S, Cui J, Ma L, Mubarak N, Zhang H, Ding S, Kim J-K (2023) Conversion mechanism of NiCo2Se4 nanotube sphere anodes for potassium-ion batteries. Energy Mater Devices 1(1):9370001

  11. Yuan F, Shao YC, Wang B, Wu YS, Zhang D, Li ZJ, Wu YMA (2022) Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Met 41:3301–3321

    Article  CAS  Google Scholar 

  12. Yang T, Niu Y, Liu Q, Xu MW (2022) Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano Mater Sci 5:119–140

  13. Fu Q, Zhao H, Sarapulova A, Dsoke S (2022) V2O5 as a versatile electrode material for postlithium energy storage systems. Appl Res 2:e202200070

  14. Chen YH, Zhao JQ, Wang Y (2020) Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications. Acs Appl Energy Mater 3:9058–9065

    Article  CAS  Google Scholar 

  15. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG (2023) Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met 42:2868–2905

    Article  CAS  Google Scholar 

  16. Lokhande PE, Chavan US, Bhosale S, Kalam A, Deokar S (2021) New‐generation materials for flexible supercapacitors. Flex Supercapacitor Nanoarchitectonics 277–313

  17. Bhattacharjee S, Ray A, Samanta A, Das SN, Kumar MA, Kumar GC (2019) Electron - Phonon interaction to tune pseudocapacitive properties of NiO. Phys B-Condens Matter 575:411686

  18. Wang CG, Guo K, He WD, Deng XL, Hou PY, Zhuge FW, Xu XJ, Zhai TY (2017) Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors. Sci Bull 62:1122–1131

    Article  CAS  Google Scholar 

  19. Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, El-Kady MF, Kaner RB, Mousavi MF (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem Mater 27:3919–3926

    Article  CAS  Google Scholar 

  20. Lakal N, Dubal S, Lokhande PE (2022) Supercapacitors: an introduction. Nanotechnol Automot Ind 459–466

  21. Li Q, Zheng SS, Xu YX, Xue HG, Pang H (2018) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518

    Article  CAS  Google Scholar 

  22. Yang YX, Ge KK, Rehman SU, Bi H (2022) Nanocarbon-based electrode materials applied for supercapacitors. Rare Met 41:3957–3975

    Article  CAS  Google Scholar 

  23. Zeng CH, Duan CP, Guo ZX, Liu ZD, Dou SM, Yuan QY, Liu P, Zhang JC, Luo JW, Liu WD, Zhang JF, Chen YN, Hu WB (2022) Ultrafastly activated needle coke as electrode material for supercapacitors. Prog Nat Sci-Mater Int 32:786–792

    Article  CAS  Google Scholar 

  24. Shi J, Tian X, Song Y, Yang T, Hu S, Liu Z (2023) Redox electrolyte-enhanced carbon-based supercapacitors: recent advances and future perspectives. Energy Mater Devices 1(1):9370009

  25. Zhou YS, Guo W, Li T (2019) A review on transition metal nitrides as electrode materials for supercapacitors. Ceram Int 45:21062–21076

    Article  CAS  Google Scholar 

  26. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  27. Liu T, Jiang CJ, You W, Yu JG (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643

    Article  CAS  Google Scholar 

  28. Zhang YN, Su CY, Chen JL, Huang WH, Lou R (2023) Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met 42:769–796

    Article  CAS  Google Scholar 

  29. Kumar R, Kim HJ, Park S, Srivastava A, Oh IK (2014) Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79:192–202

    Article  CAS  Google Scholar 

  30. Godillot G, Taberna PL, Daffos B, Simon P, Delmas C, Guerlou-Demourgues L (2016) High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide. J Power Sources 331:277–284

    Article  CAS  Google Scholar 

  31. Zeng YX, Yu MH, Meng Y, Fang PP, Lu XH, Tong YX (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6:1601053

  32. Zhao JH, Zheng MB, Run Z, Xia J, Sun MJ, Pang H (2015) 1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. J Power Sources 285:385–392

    Article  CAS  Google Scholar 

  33. Pang H, Lu QY, Lia YC, Gao F (2009) Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem Commun 7542–7544

  34. Chen H, Li J, Long C, Wei T, Ning G, Yan J, Fan Z (2014) Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. J Mar Sci Appl 13:462–466

    Article  Google Scholar 

  35. Qiao SM, Huang NB, Sun Y, Zhang JJ, Zhang YY, Gao ZY (2019) Microwave-assisted synthesis of novel 3D flower-like NiMnO3 nanoballs as electrode material for high-performance supercapacitors. J Alloy Compd 775:1109–1116

    Article  CAS  Google Scholar 

  36. Wang J, Xu C, Zhang D (2021) A three-dimensional electrode fabricated by electrophoretic deposition of graphene on nickel foam for structural supercapacitors. New J Chem 45:18567–18574

    Article  CAS  Google Scholar 

  37. Tian Y, Liu ZY, Xue R, Huang LP (2016) An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method. J Alloy Compd 671:312–317

    Article  CAS  Google Scholar 

  38. Mane SM, Pawar SS, Go JS, Teli AM, Shin JC (2021) Asymmetric supercapacitor properties of fern-like nanostructured NiCo2S4 synthesized through a one-pot simple solvothermal method. Mater Lett 301:130262

  39. Huang TF, Qiu ZH, Hu ZB, Zhang ZS (2022) Porous chopsticks-like FeCo2O4 by the hydrothermal method for high-performance asymmetric supercapacitors. J Energy Storage 46:103898

  40. Zhang RP, Liu J, Guo HG, Tong XL (2014) Hierarchically porous nickel oxide nanoflake arrays grown on carbon cloth by chemical bath deposition as superior flexible electrode for supercapacitors. Mater Lett 136:198–201

    Article  CAS  Google Scholar 

  41. Yang QL, Chen XD, Zhan HY, Wu S, Hu QZ, Zhou RR, Xue Y (2019) Mixing solvothermal synthesis of surfactant free nanoflower-sphere-like nickel selenide for supercapacitor application. Synth Met 257:116167

  42. Niu WS, Xiao ZY, Wang SF, Zhai SR, Qin LF, Zhao ZY, An QD (2021) Synthesis of nickel sulfide-supported on porous carbon from a natural seaweed-derived polysaccharide for high-performance supercapacitors. J Alloys Compd 853:157123

  43. Chime UK, Nkele AC, Ezugwu S, Nwanya AC, Shinde NM, Kebede M, Ejikeme PM, Maaza M, Ezema FI (2020) Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Curr Opin Electrochem 21:175–181

    Article  CAS  Google Scholar 

  44. Gou JX, Xie SL, Li YP, Kong XJ, Li CW (2019) Studies on preparation and performance of nickel sulfides for the application in supercapacitors. J Mater Sci-Mater Electron 30:15429–15436

    Article  CAS  Google Scholar 

  45. Feng JC, Zhao JC, Tang BHJ, Liu P, Xu JL (2010) The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor. J Solid State Chem 183:2932–2936

    Article  CAS  Google Scholar 

  46. Yang S, Zhang Z, Zhou J, Sui Z, Zhou X (2019) Hierarchical NiCo LDH-rGO/Ni foam composite as electrode material for high-performance supercapacitors. Trans Tianjin Univ 25:266–275

  47. Shwetha KP, Manjunatha C, Sudha Kamath MK, Vinaykumar, Radhika MGR, Khosla A (2022) Morphology‐controlled synthesis and structural features of ultrafine nanoparticles of Co3O4: an active electrode material for a supercapacitor. Appl Res 1:e202200031

  48. Lokhande PE, Chavan US, Pandey A (2020) Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem Energy Rev 3:155–186

    Article  CAS  Google Scholar 

  49. Wang R, Sui YW, Huang SF, Pu YG, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535

    Article  CAS  Google Scholar 

  50. Salunkhe RR, Lin JJ, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  CAS  Google Scholar 

  51. Wang YG, Zhang XG (2004) Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim Acta 49:1957–1962

    Article  CAS  Google Scholar 

  52. Chuminjak Y, Daothong S, Reanpang P, Mensing JP, Phokharatkul D, Jakmunee J, Wisitsoraat A, Tuantranont A, Singjai P (2015) Electrochemical energy-storage performances of nickel oxide films prepared by a sparking method. RSC Adv 5:67795–67802

    Article  CAS  Google Scholar 

  53. Aravindan V, Kumar PS, Sundaramurthy J, Ling WC, Ramakrishna S, Madhavi S (2013) Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J Power Sources 227:284–290

    Article  CAS  Google Scholar 

  54. Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim Acta 283:327–337

    Article  CAS  Google Scholar 

  55. Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397

    Article  CAS  Google Scholar 

  56. Al Kiey SA, Hasanin MS (2021) Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste. Environ Sci Pollut Res 28:66888–66900

    Article  CAS  Google Scholar 

  57. Singu BS, Male U, Hong SE, Yoon KR (2016) Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics 22:1485–1491

    Article  CAS  Google Scholar 

  58. Zhao L, Lei SJ, Tu QY, Rao LH, Zen WH, Xiao YH, Cheng BC (2021) Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. J Energy Storage 43:103171

  59. Chavan US, Lokhande PE, Bhosale S (2022) Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications. Mater Technol 37:728–734

    Article  CAS  Google Scholar 

  60. Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC (2014) Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep 4:7054

  61. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381

  62. Mehmood A, Rahman G, Shah AUA, Joo OS, Mian SA (2021) Template-free hydrothermal growth of nickel sulfide nanorods as high-performance electroactive materials for oxygen evolution reaction and supercapacitors. Energy Fuels 35:6868–6879

    Article  CAS  Google Scholar 

  63. Zang XX, Dai ZY, Yang J, Zhang YZ, Huang W, Dong XC (2016) Template-assisted synthesis of nickel sulfide nanowires: tuning the compositions for supercapacitors with improved electrochemical stability. ACS Appl Mater Interfaces 8:24645–24651

    Article  CAS  PubMed  Google Scholar 

  64. Zheng YZ, Ding HY, Zhang ML (2009) Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Mater Res Bull 44:403–407

    Article  CAS  Google Scholar 

  65. Guan B, Li Y, Yin BY, Liu KF, Wang DW, Zhang HH, Cheng CJ (2017) Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J 308:1165–1173

    Article  CAS  Google Scholar 

  66. Yu F, Zhu L, You T, Wang FX, Wen ZB (2015) Preparation of chestnut-like porous NiO nanospheres as electrodes for supercapacitors. RSC Adv 5:96165–96169

    Article  CAS  Google Scholar 

  67. Zhang Y, Zhang J, Ding DQ, Gao YF (2020) Controllable synthesis of three-dimensional β-NiS nanostructured assembly for hybrid-type asymmetric supercapacitors. Nanomaterials 10(3):487

  68. Lokhande PE, Chavan US (2018) Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater Lett 218:225–228

    Article  CAS  Google Scholar 

  69. Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloy Compd 734:89–111

    Article  CAS  Google Scholar 

  70. Zhong C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang JJ (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  PubMed  Google Scholar 

  71. Khajonrit J, Sichumsaeng T, Kalawa O, Chaisit S, Chinnakorn A, Chanlek N, Maensiri S (2022) Mangosteen peel-derived activated carbon for supercapacitors. Prog Nat Sci-Mater Int 32:570–578

    Article  CAS  Google Scholar 

  72. Zhou M, Yan SX, Wang Q, Tan MX, Wang DY, Yu ZQ, Luo SH, Zhang YH, Liu X (2022) Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met 41:2280–2291

    Article  CAS  Google Scholar 

  73. Jiang H, Ma J, Li CZ (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202

    Article  CAS  PubMed  Google Scholar 

  74. Mirzazadeh Khomambazari S, Lokhande P, Padervand S, Zaulkiflee ND, Irandoost M, Dubal S, Sharifan H (2022) A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes. J Compos Compd 4:195–208

    Google Scholar 

  75. Haddon RC (2002) Carbon nanotubes. Acc Chem Res 35:997–997

    Article  CAS  PubMed  Google Scholar 

  76. Chu HJ, Lee CY, Tai NH (2016) Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors. J Power Sources 322:31–39

    Article  CAS  Google Scholar 

  77. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R (2015) Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta 160:178–184

    Article  CAS  Google Scholar 

  78. Tang J, Salunkhe RR, Zhang HB, Malgras V, Ahamad T, Alshehri SM, Kobayashi N, Tominaka S, Ide Y, Kim JH, Yamauchi Y (2016) Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep 6:30295

  79. Li Y, Henzie J, Park T, Wang J, Young C, Xie HQ, Yi JW, Li J, Kim M, Kim J, Yamauchi Y, Na J (2020) Fabrication of flexible microsupercapacitors with binder-free ZIF-8 derived carbon films via electrophoretic deposition. Bull Chem Soc Jpn 93:176–181

    Article  CAS  Google Scholar 

  80. Tang L, Duan F, Chen MQ (2017) Multilayer super-short carbon nanotube/nickel hydroxide nanoflakes for enhanced supercapacitor properties. J Mater Sci-Mater Electron 28:2325–2334

    Article  CAS  Google Scholar 

  81. Lai YH, Gupta S, Hsiao CH, Lee CY, Tai NH (2020) Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors. Electrochim Acta 354:136744

  82. Ouyang YH, Chen YL, Peng J, Yang J, Wu C, Chang BB, Guo XW, Chen GR, Luo ZG, Wang XY (2021) Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors. J Alloys Compd 885:160979

  83. Ren ZD, Luo HW, Mao HC, Li A, Dong R, Liu SH, Liu YA (2020) Hybrid supercapacitor based on graphene and Ni/Ni(OH)2 nanoparticles formed by a modified electrochemical exfoliation method. Chem Phys Lett 760:138019

  84. Lai LQ, Li R, Su SY, Zhang L, Cui YF, Guo NL, Shi W, Zhu XH (2020) Controllable synthesis of reduced graphene oxide/nickel hydroxide composites with different morphologies for high performance supercapacitors. J Alloys Compd 820:153120

  85. Li WS, Shih YC, Cheng HC (2020) Green synthesis of CNTs/Ni(OH)2 nanostructures for electrochemical supercapacitors. Chem Phys Lett 750:137499

  86. Akhtar MS, Gul IH, Baig MM, Akram MA (2021) Binder-free pseudocapacitive nickel cobalt sulfide/MWCNTs hybrid electrode directly grown on nickel foam for high rate supercapacitors. Mater Sci Eng B-Adv Funct Solid-State Mater 264:114898

  87. Cai J, Zhang D, Ding WP, Zhu ZZ, Wang GZ, He JR, Wang HB, Fei P, Si TL (2020) Promising rice-husk-derived carbon/Ni(OH)2 composite materials as a high-performing supercapacitor electrode. ACS Omega 5:29896–29902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li K, Li J, Zhu Q, Xu B (2022) Three‐Dimensional MXenes for Supercapacitors: A Review. Small Methods 6:2101537

  89. Qi JQ, Zhang CC, Liu H, Zhu L, Sui YW, Feng XJ, Wei WQ, Zhang H, Cao P (2022) MXene-wrapped ZnCo2S4 core-shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors. Rare Met 41:2633–2644

    Article  CAS  Google Scholar 

  90. Cai Z, Ma YF, Wang M, Qian AN, Tong ZM, Xiao LT, Jia ST, Chen XY (2022) Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances. Rare Met 41:2084–2093

    Article  CAS  Google Scholar 

  91. Ma R, Chen Z, Zhao D, Zhang X, Zhuo J, Yin Y, Wang X, Yang G, Yi F (2021) Ti3C2Tx MXene for electrode materials of supercapacitors. J Mater Chem A 9:11501–11529

    Article  CAS  Google Scholar 

  92. Syamsai R, Grace AN (2019) Ta4C3 MXene as supercapacitor electrodes. J Alloy Compd 792:1230–1238

    Article  CAS  Google Scholar 

  93. Xia Q, Xia T, Wu X (2022) PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Met 41:1195–1201

    Article  CAS  Google Scholar 

  94. Zhang R, Dong J, Zhang W, Ma L, Jiang Z, Wang J, Huang Y (2022) Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy 91:106633

  95. Zhang D, Cao J, Zhang X, Insin N, Liu R, Qin J (2020) NiMn Layered Double Hydroxide Nanosheets In-situ Anchored on Ti3C2 MXene via Chemical Bonds for Superior Supercapacitors. ACS Appl Energy Mater 3:5949–5964

    Article  CAS  Google Scholar 

  96. Zhou X, Hou Z, Zhang H-Y, Yu J (2023) Synergistic coupling of NiVAl-layered double hydroxide with few-layered Ti3C2Tx–MXene nanosheets for superior asymmetric supercapacitor performance. J Mater Chem C 11:15571–15580

    Article  CAS  Google Scholar 

  97. Roy Chowdhury S, Ray A, Chougule SS, Min J, Jeffery AA, Ko K, Kim Y, Das S, Jung N (2022) Mixed spinel ni–co oxides: an efficient bifunctional oxygen electrocatalyst for sustainable energy application. ACS Appl Energy Mater 5:4421–4430

    Article  CAS  Google Scholar 

  98. Wang MM, Xue JY, Zhang FM, Ma WL, Cui HT (2015) Facile synthesis of nickel-cobalt double hydroxide nanosheets with high rate capability for application in supercapacitor. J Nanoparticle Res 17:106

  99. Lei X, Shi ZR, Wang X, Wang T, Ai JB, Shi PL, Xue R, Guo H, Yang W (2018) Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composite for high-performance supercapacitor application. Colloids Surf A-Physicochem Eng Asp 549:76–85

    Article  CAS  Google Scholar 

  100. Wang D, Wei AF, Tian LY, Mensah A, Li DW, Xu Y, Wei QF (2019) Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl Surf Sci 483:593–600

    Article  CAS  Google Scholar 

  101. Qu GM, Li CL, Hou PY, Zhao G, Wang X, Zhang XL, Xu XJ (2020) Hierarchically hollow structured NiCo2S4@NiS for high-performance flexible hybrid supercapacitors. Nanoscale 12:4686–4694

    Article  CAS  PubMed  Google Scholar 

  102. Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158:1523–1532

    Article  CAS  Google Scholar 

  103. Patil SS, Dubal DP, Tamboli MS, Ambekar JD, Kolekar SS, Gomez-Romero P, Kale BB, Patil DR (2016) Ag:BiVO4 dendritic hybrid-architecture for high energy density symmetric supercapacitors. J Mater Chem A 4:7580–7584

    Article  CAS  Google Scholar 

  104. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  CAS  Google Scholar 

  105. Shaikh JS, Shaikh NS, Kharade R, Beknalkar SA, Patil JV, Suryawanshi MP, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2018) Symmetric supercapacitor: Sulphurized graphene and ionic liquid. J Colloid Interface Sci 527:40–48

    Article  CAS  PubMed  Google Scholar 

  106. Parveen N, Ansari SA, Ansari SG, Fouad H, Abd El-Salam NM, Cho MH (2018) Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochim Acta 268:82–93

    Article  CAS  Google Scholar 

  107. Trabelsi AB, Essam D, Alkallas FHH, Ahmed AMM, Rabia M (2022) Petal-like NiS-NiO/G-C3N4 Nanocomposite for High-Performance Symmetric Supercapacitor. Micromachines 13(12):2134

  108. Yang CC, Sun WC, Kumar A, Pattanayak B, Tseng TY (2019) Templating synthesis of nickel cobaltite nanoflakes and their nanocomposites for making high-performance symmetric supercapacitors. Mater Today Energy 14:100356

  109. Rantho MN, Madito MJ, Manyala N (2020) High-performance symmetric supercapacitor device based on carbonized iron-polyaniline/nickel graphene foam. J Alloys Compd 819:152993

  110. Wu NN, Bai X, Pan D, Dong BB, Wei RB, Naik N, Patil RR, Guo ZH (2021) Recent advances of asymmetric supercapacitors. Adv Mater Interfaces 8:2001710

  111. Asim S, Javed MS, Hussain S, Rana M, Iram F, Lv D, Hashim M, Saleem M, Khalid M, Jawaria R, Ullah Z, Gull N (2019) RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries. Electrochim Acta 326:135009

  112. Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (2013) New Generation “Nanohybrid Supercapacitor.” Acc Chem Res 46:1075–1083

    Article  CAS  PubMed  Google Scholar 

  113. Liu H, He P, Li Z, Liu Y, Li J (2006) A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochim Acta 51:1925–1931

    Article  CAS  Google Scholar 

  114. Gao X, Zhao Y, Dai K, Wang J, Zhang B, Shen X (2020) NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J 384:123373

  115. Tang ZH, Zhu WB, Chen JZ, Li YQ, Huang P, Liao K, Fu SY (2023) Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices, Nano. Mater Sci 5:319–328

    CAS  Google Scholar 

  116. Li Q, Jing S, Yong Z, Zhang Q, Liu C, Zhu K, Feng Y, Gong W, Yao Y (2021) Towards ultrahigh-energy-density flexible aqueous rechargeable Ni//Bi batteries: Free-standing hierarchical nanowire arrays core-shell heterostructures system. Energy Storage Mater 42:815–825

    Article  Google Scholar 

  117. Zhu RJ, Liu J, Hua C, Pan HY, Cao YJ, Li M (2023) Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Met 43:431–454

  118. Liu C, Jiang W, Hu F, Wu X, Xue D (2018) Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorg Chem Front 5:835–843

    Article  CAS  Google Scholar 

  119. Ning W-W, Chen L-B, Wei W-F, Chen Y-J, Zhang X-Y (2020) NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met 39:1034–1044

    Article  CAS  Google Scholar 

  120. Xu HH, Yue L, Tang Y, Liu F, Zhu HJ, Bao SJ (2023) Preparation of chitosan and citric acid crosslinked membrane and its application in quasi-solid supercapacitors. Rare Met 42:430–437

    Article  CAS  Google Scholar 

  121. Shi P, Chen R, Hua L, Li L, Chen R, Gong Y, Yu C, Zhou J, Liu B, Sun G, Huang W (2017) Highly concentrated, ultrathin nickel hydroxide nanosheet ink for wearable energy storage devices. Adv Mater 29:1703455

  122. Qi J-Q, Huang M-Y, Ruan C-Y, Zhu D-D, Zhu L, Wei F-X, Sui Y-W, Meng Q-K (2022) Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors. Rare Met 41:4116–4126

    Article  CAS  Google Scholar 

  123. Nath AR, Sandhyarani N (2020) SILAR deposited nickel sulphide-nickel hydroxide nanocomposite for high performance asymmetric supercapacitor. Electrochim Acta 356:136844

  124. Tian F, Wang HF, Li H, Liu SZ, Li D (2022) Preparation and electrochemical capacitance of binder-free different micromorphology nickel sulfide on nickel foam for asymmetric supercapacitor. J Nanoparticle Res 24:123

  125. Li X, Elshahawy AM, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13:1701530

  126. Zan GT, Wu T, Hu P, Zhou YH, Zhao SL, Xu SM, Chen J, Cui Y, Wu QS (2020) An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Mater 28:82–90

    Article  Google Scholar 

  127. Kang J, Xue Y, Yang J, Hu Q, Zhang Q, Gu L, Selloni A, Liu LM, Guo L (nd) Realizing Two-Electron Transfer in Ni(OH)2 Nanosheets for Energy Storage. J Am Chem Soc 144(20):8969–8976

  128. Wan LM, Xia QY, Wu JH, Liu J, Shi ZY, Lan S, Zhai T, Savilov SV, Aldoshin SM, Xia H (2023) Stabilizing charge storage of Fe2O3-based electrode via phosphate ion functionalization for long cycling life. Rare Met 42:39–46

    Article  CAS  Google Scholar 

  129. Li B, Wang C, Qin Z, Luan C, Zhan C, Li L, Lv R, Shen W, Huang Z-H (2023) ZnS/CuS nanoparticles encapsulated in multichannel carbon fibers as high-performance anode materials for flexible Li-ion capacitors. Energy Mater Devices 1(2):9370012

  130. Zan G, Wu T, Dong W, Zhou J, Tu T, Xu R, Chen Y, Wang Y, Wu Q (2022) Two-Level Biomimetic Designs Enable Intelligent Stress Dispersion for Super-Foldable C/NiS Nanofiber Free-Standing Electrode. Adv Fiber Mater 4:1177–1190

    Article  CAS  Google Scholar 

  131. Zan GT, Wu T, Zhu F, He PF, Cheng YP, Chai SS, Wang Y, Huang XF, Zhang WX, Wan Y, Peng XJ, Wu QS (2021) A biomimetic conductive super-foldable material. Matter 4:3232–3247

    Article  CAS  Google Scholar 

  132. Kim H, Zan G, Seo Y, Lee S, Park C (2023) Stimuli-responsive liquid metal hybrids for human-interactive electronics. Adv Funct Mater. https://doi.org/10.1002/adfm.202308703

  133. Mala NA, Sivakumar S, Batoo KM, Hadi M (2021) Design and fabrication of iron-doped nickel oxide-based flexible electrode for high-performance energy storage applications. Inorg Chem Commun 131:108797

  134. Purushothaman KK, Babu IM, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773

    Article  CAS  PubMed  Google Scholar 

  135. Fan MQ, Ren B, Yu L, Liu Q, Wang J, Song DL, Liu JY, Jing XY, Liu LH (2014) Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode. CrystEngComm 16:10389–10394

    Article  CAS  Google Scholar 

  136. Xiao HH, Qu FY, Wu X (2016) Ultrathin NiO nanoflakes electrode materials for supercapacitors. Appl Surf Sci 360:8–13

    Article  CAS  Google Scholar 

  137. Zhao J, Guan B, Hu B, Xu ZY, Wang DW, Zhang HH (2017) Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim Acta 230:428–437

    Article  CAS  Google Scholar 

  138. Nandhini S, Mary AJC, Muralidharan G (2018) Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl Surf Sci 449:485–491

    Article  CAS  Google Scholar 

  139. Mao YL, Zhou BH, Peng S (2020) Simple deposition of mixed α, β-nickel hydroxide thin film onto nickel foam as high-performance supercapacitor electrode material. J Mater Sci-Mater Electron 31:9457–9467

    Article  CAS  Google Scholar 

  140. Wu YS, Yang YY, Liu BF, Hu MZ, Min X, Wu YH, Liu ZJ, Yu LX (2020) Self-assembled three-dimension flower-like nickel hydroxide synthesis with one-pot hydrothermal method for electrochemical applications. Mater Lett 264:127358

  141. Zhang HN, Liu Y, Zhu C, Ma XG (2020) Influence of annealing process on the electrochemical properties of Ni3S2 electrode for stable supercapacitors. J Energy Storage 32:101946

  142. Lokhande PE, Pawar K, Chavan US (2018) Chemically deposited ultrathin α-Ni(OH)2 nanosheet using surfactant on Ni foam for high performance supercapacitor application. Mater Sci Energy Technol 1:166–170

    Google Scholar 

  143. Ghosh S, Kumar JS, Murmu NC, Ganesh RS, Inokawa H, Kuila T (2019) Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor. Compos Part B-Eng 177:107373

  144. Hou BQ, Jin X, Jiang LL, Li YH, Qiu CJ, Han DD, Ding YS, Sheng LZ (2021) Flexible porous Graphene/Nickel hydroxide composite films with 3D ion transport channels for high volumetric performance asymmetric supercapacitor. Appl Surf Sci 569:151036

  145. Ma LB, Shen XP, Ji ZY, Wang S, Zhou H, Zhu GX (2014) Carbon coated nickel sulfide/reduced graphene oxide nanocomposites: facile synthesis and excellent supercapacitor performance. Electrochim Acta 146:525–532

    Article  CAS  Google Scholar 

  146. Cao XY, Wang XX, Cui L, Jiang DG, Zheng YW, Liu JQ (2017) Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem Eng J 327:1085–1092

    Article  CAS  Google Scholar 

  147. Lin HL, Liu F, Wang XJ, Ai YN, Yao ZQ, Chu L, Han S, Zhuang XD (2016) Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim Acta 191:705–715

    Article  CAS  Google Scholar 

  148. He JP, Guo C, Zhou SW, Zhao YL, Wang QP, Yang S, Yang JQ, Wang QH (2019) Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg Chem Front 6:226–232

    Article  CAS  Google Scholar 

  149. Liu SD, Yin Y, Hui KS, Hui KN, Lee SC, Jun SC (2019) Nickel hydroxide/chemical vapor deposition-grown graphene/nickel hydroxide/nickel foam hybrid electrode for high performance supercapacitors. Electrochim Acta 297:479–487

    Article  CAS  Google Scholar 

  150. Reddy BJ, Vickraman P, Justin AS (2019) Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl Surf Sci 483:1142–1148

    Article  CAS  Google Scholar 

  151. Hong YW, Xu JL, Chung JS, Choi WM (2020) Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors. J Mater Sci Technol 58:73–79

    Article  CAS  Google Scholar 

  152. Liu JL, Wang YH, Hu RJ, Munir HA, Liu H (2020) High-performance supercapacitor electrode based on 3D rose-like β-Ni (OH)2/rGO nanohybrid. J Phys Chem Solids 138:109297

  153. Lokhande PE, Chavan US (2019) Nanostructured Ni(OH)2/rGO composite chemically deposited on Ni foam for high performance of supercapacitor applications. Mater Sci Energy Technol 2:52–56

    Google Scholar 

  154. Kadam VS, Jagtap CV, Lokhande PE, Bulakhe RN, Kang SW, Yadav AA, Pathan HM (2023) One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. J Mater Sci-Mater Electron 34:1083

  155. Yuan K, Gao T-J, Yang Y, Luo W, Li S, Zhang C-Y, Xu J-X, Li N, Zhu Y-R (2023) Template sacrificial controlled synthesis of hierarchical nanoporous carbon@NiCo2S4 microspheres for high-performance hybrid supercapacitors. Rare Met 42:2643–2657

    Article  CAS  Google Scholar 

  156. Cheng JW, Lin LY, Hong WL, Lin LY, Chen HQ, Lai HX (2018) Rational design of nickel cobalt sulfide/cobalt sulfide sheet-on-sheet structure for asymmetric supercapacitors. Electrochim Acta 283:1245–1252

    Article  CAS  Google Scholar 

  157. Bulakhe RN, Arote SA, Kwon B, Park S, In I (2020) Facile synthesis of nickel cobalt sulfide nano flowers for high performance supercapacitor applications. Mater Today Chem 15:100210

  158. Dong CQ, Ge QX, Li Y, Zhang JW (2020) Boosting Honeycomb-like Layer Double Hydroxides Nanosheets as advanced Electrode for Supercapacitors. Thin Solid Films 715:138439

  159. Nguyen TV, Son LT, Thao PM, Son LT, Phat DT, Lan NT, Nghia NV, Thu TV (2020) One-step solvothermal synthesis of mixed nickel -cobalt sulfides as high-performance supercapacitor electrode materials. J Alloys Compd 831:154921

  160. Ouyang YH, Xing T, Chen YL, Zheng LP, Peng J, Wu C, Chang BB, Luo ZG, Wang XY (2020) Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor. J Energy Storage 30:101454

  161. Huai X, Liu J, Wu X (2023) Cobalt-doped NiMoO4 nanosheet for high-performance flexible supercapacitor. Chin J Struct Chem 42:100158

  162. Luo Q, Lu CC, Liu LR , Zhu MY(2023) Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures 3:2023011

  163. Zhang K, Cen Z, Yang F, Xu K (2021) Rational construction of NiCo2O4@Fe2O3 core-shell nanowire arrays for high-performance supercapacitors. Prog Nat Sci Mater Int 31:19–24

    Article  CAS  Google Scholar 

  164. Zhang B, Liu Q, Xu K, Zou R, Wang C (2022) Electrochemical energy storage application of CuO/CuO@Ni–CoMoO4·0.75H2O nanobelt arrays grown directly on Cu foam. Prog Nat Sci Mater Int 32:163–170

    Article  CAS  Google Scholar 

  165. Lei H, Pan Y, Guo R-G, Zhang J, Han X, Yu L-M, Jiang W-Q (2015) Synthesis and electrochemical properties of Mn-substituted high-capacity nickel hydroxide. Rare Met 41:1977–1982

    Article  Google Scholar 

  166. Han XX, Song LL, Ding JD, Hu LL, Xu CR, Wang YQ (2020) Design and preparation of Cu-doped NiCo2O4 nanosheets with intrinsic porosities for symmetric supercapacitors. Mater Lett 278:128400

  167. Zhang S, Huang B, Shi C, Xu Q, Zhu YB (2020) Design of electrode materials of nickel-cobalt compounds for aqueous symmetrical supercapacitor with large power and high energy density. Colloids Surf A-Physicochem Eng Asp 605:125243

  168. Tanwar S, Singh N, Sharma AL (2022) High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres. J Mater Sci 57:20335–20350

    Article  CAS  Google Scholar 

  169. Erusappan E, Pan GT, Chung HY, Chong SH, Thiripuranthagan S, Yang TCK, Huang CM (2020) Hierarchical nickel-cobalt oxide and glucose-based carbon electrodes for asymmetric supercapacitor with high energy density. J Taiwan Inst Chem Eng 112:330–336

    Article  CAS  Google Scholar 

  170. Evariste U, Jiang GH, Yu B, Liu YK, Ma PP (2020) One-step electrodeposition of molybdenum nickel cobalt sulfides on ni foam for high-performance asymmetric supercapacitors. J Energy Storage 29:101419

  171. Li YY, Chen X, Cao YL, Zhou WY, Chai H (2020) The ultralong cycle life of solid flexible asymmetric supercapacitors based on nickel vanadium sulfide nanospheres. CrystEngComm 22:5226–5236

    Article  CAS  Google Scholar 

  172. Marje SJ, Katkar PK, Pujari SS, Khalate SA, Lokhande AC, Patil UM (2020) Regulated micro-leaf like nickel pyrophosphate as a cathode electrode for asymmetric supercapacitor. Synthetic Metals 259:116224

  173. Lokhande PE, Chavan US (2020) All-Solid-State asymmetric supercapacitor based on ni-co layered double hydroxide and rgo nanocomposite deposited on ni foam. J Electrochem Energy Convers Storage 17(3):031013

  174. Kang W-W, Zhao Y-N, Zhang W-Q, Sun Y, Zhang X-Q, Yi G-Y, Huang G-X, Xing B-L, Zhang C-X, Lin B-P (2022) Novel aqueous rechargeable nickel//bismuth battery based on highly porous Bi2WO6 and Co0.5Ni0.5MoO4 microspheres. Rare Met 42:902–915

    Article  Google Scholar 

  175. Liu J, Ren L, Luo J, Song J (2022) Microwave synthesis of NiSe/NiTe2 nanocomposite grown in situ on Ni foam for all-solid-state asymmetric supercapacitors. Colloids Surf A: Physicochem Eng Asp 647:129093

Download references

Funding

This work is supported by the financial support from Science and Technology Project of Lishui City (2021GYX12), Scientific Research Fund of Zhejiang Provincial Education Department (Y202352431), and the National Natural Science Foundation of China (No. 22205165).

Author information

Authors and Affiliations

Authors

Contributions

Jiangfeng Li: conceptualization, writing, formal analysis. Zhihong Dong: writing, formal analysis. Rui Chen: conceptualization, writing. Qingsheng Wu: review. Guangtao Zan: writing, review, editing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jiangfeng Li, Rui Chen or Guangtao Zan.

Ethics declarations

Ethical approval

This work is not applicable to both human and/or animal studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 5744 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Dong, Z., Chen, R. et al. Advanced nickel-based composite materials for supercapacitor electrodes. Ionics 30, 1833–1855 (2024). https://doi.org/10.1007/s11581-024-05424-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05424-5

Keywords

Navigation