Skip to main content

Advertisement

Log in

Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Both MXene and zeolitic imidazolate framework (ZIF) derivatives are tend to agglomerate during the compound process, which adversely affects their electrochemical properties. To alleviate this phenomenon, few-layer MXene was stripped by mechanical method, and electrostatic self-assembly with ZIF-67 in the presence of cationic surfactants. Furthermore, CoNi2S4/MXene composite was synthesized by the facile hydrothermal reaction. CoNi2S4 well retained the cube frame structure of the ZIF-67 with the sagging outer frame and rough surface. In the composite, CoNi2S4 nanocubes were interlinked by MXene nanosheets, which can effectively improve the structural stability and make full use of the active surface. CoNi2S4/MXene composite electrode exhibits an outperforming specific capacitance (751 C·g−1 at 1 A·g−1), far higher than that of pure CoNi2S4 (600 C·g−1 at 1 A·g−1). An asymmetric supercapacitor (CoNi2S4/MXene//reduced graphene oxide (RGO)) assembling delivers high energy density of 33.8 Wh·kg−1 and excellent cycling performance. This study indicates the potential of MXene/ZIF derivatives in the application of supercapacitor.

Graphical abstract

摘要

MXene和ZIF衍生物在复合过程中都容易团聚,这对它们的电化学性能产生不利影响。为了缓解这一现象,通过机械方法剥离少层MXene,并在阳离子表面活性剂存在下与ZIF-67进行静电自组装。此外,通过简单的水热反应合成了CoNi2S4/MXene复合材料。CoNi2S4很好地保留了ZIF-67的立方体框架结构,具有下垂的外框和粗糙的表面。在复合材料中,MXene纳米片将CoNi2S4纳米立方体相互连接,有效提高了结构稳定性,充分利用了活性表面。CoNi2S4/MXene复合电极表现出优异的比电容 (1 A·g−1时为751 C·g−1),远高于纯CoNi2S4的比电容 (1 A·g-1时为600 C·g−1)。非对称超级电容器(CoNi2S4/MXene//RGO)组装提供了33.8 Wh·kg−1的高能量密度和优异的循环性能。该研究表明了MXene/ZIF衍生物在超级电容器应用中的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Devi NS, Hariram M, Vivekanandhan S. Modification techniques to improve the capacitive performance of biocarbon materials. J Energy Storage. 2021;33:101870. https://doi.org/10.1016/j.est.2020.101870.

    Article  Google Scholar 

  2. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J. 2021;403:126352. https://doi.org/10.1016/j.cej.2020.126352.

    Article  CAS  Google Scholar 

  3. Guo JX, Gao M, Nie J, Yin FX, Ma GP. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J Colloid Interface Sci. 2019;544:112. https://doi.org/10.1016/j.jcis.2019.02.084.

    Article  CAS  Google Scholar 

  4. Li X, Wen CY, Yang LT, Zhang RX, Li XH, Li YS, Che RC. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon. 2021;175:509. https://doi.org/10.1016/j.carbon.2020.11.089.

    Article  CAS  Google Scholar 

  5. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu JS, Barsoum MW, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA. 2014;111(47):16676. https://doi.org/10.1073/pnas.1414215111.

    Article  CAS  Google Scholar 

  6. Bai Y, Liu CL, Chen TT, Li WT, Zheng SS, Pi YC, Luo YS, Pang H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem-Int Edn. 2021;60(48):25318. https://doi.org/10.1002/anie.202112381.

    Article  CAS  Google Scholar 

  7. Chen JZ, Chen MF, Zhou WJ, Xu XW, Liu B, Zhang WQ, Wong CP. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high- performance electrochemical capacitors. ACS Nano. 2022;16(2):2461. https://doi.org/10.1021/acsnano.1c09004.

    Article  CAS  Google Scholar 

  8. Tan ZL, Wei JX, Liu Y, Zaman FU, Rehman W, Hou LR, Yuan CZ. V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Met. 2022;41(3):775. https://doi.org/10.1007/s12598-021-01821-1.

    Article  CAS  Google Scholar 

  9. Wang KL, Zheng BC, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan QH. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019;20:299. https://doi.org/10.1016/j.ensm.2019.04.029.

    Article  Google Scholar 

  10. Wei YD, Zheng MM, Luo WL, Dai B, Ren JJ, Ma ML, Li TX, Ma Y. All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J Energy Storage. 2022;45:103715. https://doi.org/10.1016/j.est.2021.103715.

    Article  Google Scholar 

  11. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Func Mater. 2017;27(30):1701264. https://doi.org/10.1002/adfm.201701264.

    Article  CAS  Google Scholar 

  12. Yang X, Yao YW, Wang Q, Zhu K, Ye K, Wang GL, Cao DX, Yan J. 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv Func Mater. 2022;32(10):2109479. https://doi.org/10.1002/adfm.202109479.

    Article  CAS  Google Scholar 

  13. Sun N, Zhu QZ, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Func Mater. 2019;29(51):1906282. https://doi.org/10.1002/adfm.201906282.

    Article  CAS  Google Scholar 

  14. Vahidmohammadi A, Liang WT, Mojtabavi M, Wanunu M, Beidaghi M. 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Mater. 2021;41:554. https://doi.org/10.1016/j.ensm.2021.06.014.

    Article  Google Scholar 

  15. Zhang RJ, Dong JD, Zhang W, Ma LN, Jiang ZX, Wang JJ, Huang YD. Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy. 2022;91:106633. https://doi.org/10.1016/j.nanoen.2021.106633.

    Article  CAS  Google Scholar 

  16. Ahmad R, Khan UA, Iqbal N, Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv. 2020;10(71):43733. https://doi.org/10.1039/d0ra08560j.

    Article  CAS  Google Scholar 

  17. Dai SM, Han FF, Tang J, Tang WH. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochim Acta. 2019;328:135103. https://doi.org/10.1016/j.electacta.2019.135103.

    Article  CAS  Google Scholar 

  18. Him SA, Park KH. Nitrogen-doped zeolitic imidazolate framework and particle-reduced graphene oxide composites as electrochemical sensors and battery-type supercapacitors. ACS Appl Nano Mater. 2021;4(8):7870. https://doi.org/10.1021/acsanm.1c01189.

    Article  CAS  Google Scholar 

  19. Li WT, Guo XT, Geng PB, Du M, Jing QL, Chen XD, Zhang GX, Li HP, Xu Q, Braunstein P, Pang H. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv Mater. 2021;33(45):2105163. https://doi.org/10.1002/adma.202105163.

    Article  CAS  Google Scholar 

  20. Tao JQ, Xu LL, Wan L, Hou JS, Yi PS, Chen P, Zhou JT, Yao ZJ. Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption. Nanoscale. 2021;13(30):12896. https://doi.org/10.1039/d1nr03450b.

    Article  CAS  Google Scholar 

  21. Ma ZL, Zheng R, Liu Y, Ying YL, Shi WD. Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. J Colloid Interface Sci. 2021;602:627. https://doi.org/10.1016/j.jcis.2021.06.027.

    Article  CAS  Google Scholar 

  22. Tang J, Hui ZZ, Hu T, Cheng X, Guo JH, Li ZR, Yu H. A sensitive acetaminophen sensor based on Co metal-organic framework (ZIF-67) and macroporous carbon composite. Rare Metals. 2022;41(1):189. https://doi.org/10.1007/s12598-021-01709-0.

    Article  CAS  Google Scholar 

  23. Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680. https://doi.org/10.1007/s12598-020-01412-6.

    Article  CAS  Google Scholar 

  24. Liu CL, Bai Y, Li WT, Yang FY, Zhang GX, Pang H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew Chem-Int Edn. 2022;61(11):e202116282. https://doi.org/10.1002/anie.202116282.

    Article  CAS  Google Scholar 

  25. Yang H, Kruger PE, Telfer SG. Metal-organic framework nanocrystals as sacrificial templates for hollow and exceptionally porous titania and composite materials. Inorg Chem. 2015;54(19):9483. https://doi.org/10.1021/acs.inorgchem.5b01352.

    Article  CAS  Google Scholar 

  26. Wu J, Wei FX, Sui YW, Qi JQ, Zhang XP. Interconnected NiS-nanosheets@porous carbon derived from zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int J Hydrogen Energy. 2020;45(38):19237. https://doi.org/10.1016/j.ijhydene.2020.05.061.

    Article  CAS  Google Scholar 

  27. Wen YY, Wei ZT, Ma C, Xing XF, Li ZX, Luo D. MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution. Nanomaterials. 2019;9(5):775. https://doi.org/10.3390/nano9050775.

    Article  CAS  Google Scholar 

  28. Zhao XY, Ma QX, Tao K, Han L. ZIF-derived porous CoNi2S4 on intercrosslinked polypyrrole tubes for high-performance asymmetric supercapacitors. ACS Appl Energy Mater. 2021;4(4):4199. https://doi.org/10.1021/acsaem.1c00516.

    Article  CAS  Google Scholar 

  29. Yang Z, Cheng QH, Li WW, Li YJ, Yang C, Tao K, Han L. Construction of 2D ZIF-derived hierarchical and hollow NiCo-LDH “nanosheet-on-nanosheet” arrays on reduced graphene oxide/Ni foam for boosted electrochemical energy storage. J Alloy Compd. 2021;850:156864. https://doi.org/10.1016/j.jallcom.2020.156864.

    Article  CAS  Google Scholar 

  30. Mei L, Yang T, Xu C, Zhang M, Zhang M, Chen LB, Li QH, Wang TH. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy. 2014;3:36. https://doi.org/10.1016/j.nanoen.2013.10.004.

    Article  CAS  Google Scholar 

  31. Zheng SS, Zhou HJ, Xue HG, Braunstein P, Pang H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J Colloid Interface Sci. 2022;614:130. https://doi.org/10.1016/j.jcis.2022.01.094.

    Article  CAS  Google Scholar 

  32. Pecenek H, Yetiman S, Dokan FK, Onses MS, Yilmaz E, Sahmetlioglu E. Effects of carbon nanomaterials and MXene addition on the performance of nitrogen doped MnO2 based supercapacitors. Ceram Int. 2022;48(5):7253. https://doi.org/10.1016/j.ceramint.2021.11.285.

    Article  CAS  Google Scholar 

  33. Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843. https://doi.org/10.1039/c9ta01850f.

    Article  CAS  Google Scholar 

  34. Parkash A. CTAB-capped copper nanoparticles coated on N doped carbon layer and encapsulated in ZIF-67: a highly-efficient ORR catalyst. J Porous Mater. 2020;27(5):1377. https://doi.org/10.1007/s10934-020-00913-0.

    Article  CAS  Google Scholar 

  35. Parkash A. CTAB-caped Cu nanoparticles doped on zeolitic imidazolate framework-ZIF-67 as bifunctional catalysts for oxygen-reduction and evolution reactions in alkaline media. J Porous Mater. 2021;28(4):1245. https://doi.org/10.1007/s10934-021-01076-2.

    Article  CAS  Google Scholar 

  36. Li Y, An FF, Wu HR, Zhu SM, Lin CYZ, Xia MD, Xue K, Zhang D, Lian K. A NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. J Power Sources. 2019;427:138. https://doi.org/10.1016/j.jpowsour.2019.04.060.

    Article  CAS  Google Scholar 

  37. Liu T, Liu JH, Zhang LY, Cheng B, Yu JG. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J Mater Sci Technol. 2020;47:113. https://doi.org/10.1016/j.jmst.2019.12.027.

    Article  Google Scholar 

  38. Zhao W, Zheng YW, Cui L, Jia DD, Wei D, Zheng RK, Barrow C, Yang WR, Liu JQ. MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chem Eng J. 2019;371:461. https://doi.org/10.1016/j.cej.2019.04.070.

    Article  CAS  Google Scholar 

  39. Liu H, Hu R, Qi JQ, Sui YW, He YZ, Meng QK, Wei FX, Ren YJ, Zhao YL, Wei WQ. One-step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high-performance asymmetrical supercapacitors. Adv Mater Interfaces. 2020;7(6):1901659. https://doi.org/10.1002/admi.201901659.

    Article  CAS  Google Scholar 

  40. Cao B, Liu H, Zhang X, Zhang P, Zhu QZ, Du HL, Wang LL, Zhang RP, Xu B. MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Letters. 2021;13(1):202. https://doi.org/10.1007/s40820-021-00728-x.

    Article  CAS  Google Scholar 

  41. Cai FS, Zhang GY, Chen J, Gou XL, Liu HK, Dou SX. Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed Engl. 2004;43(32):4212. https://doi.org/10.1002/anie.200460053.

    Article  CAS  Google Scholar 

  42. Brousse T, Bélanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015;162(5):A5185. https://doi.org/10.1149/2.0201505jes.

    Article  CAS  Google Scholar 

  43. Fan ZM, Wang YS, Xie ZM, Wang DL, Yuan Y, Kang HJ, Su BL, Cheng ZJ, Liu YY. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci. 2018;5(10):1800750. https://doi.org/10.1002/advs.201800750.

    Article  CAS  Google Scholar 

  44. Govindasamy M, Shanthi S, Elaiyappillai E, Wang SF, Johnson PM, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C. Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta. 2019;293:328. https://doi.org/10.1016/j.electacta.2018.10.051.

    Article  CAS  Google Scholar 

  45. Pan ZH, Cao F, Hu X, Ji XH. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J Mater Chem A. 2019;7(15):8984. https://doi.org/10.1039/c9ta00085b.

    Article  CAS  Google Scholar 

  46. Liu R, Zhang AT, Tang JG, Tian JM, Huang WG, Cai JT, Barrow C, Yang WR, Liu JQ. Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors. Chemistry. 2019;25(21):5547. https://doi.org/10.1002/chem.201806342.

    Article  CAS  Google Scholar 

  47. Luo YY, Tian YP, Tang Y, Yin XT, Que WX. 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors. J Power Sources. 2021;482:228961. https://doi.org/10.1016/j.jpowsour.2020.228961.

    Article  CAS  Google Scholar 

  48. Liao LP, Zhang AT, Zheng K, Liu R, Cheng YJ, Wang LH, Li AH, Liu JQ. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors. ACS Appl Mater Interfaces. 2021;13(24):28222. https://doi.org/10.1021/acsami.1c05904.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Dong Zhu or Qing-Kun Meng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 130 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, JQ., Huang, MY., Ruan, CY. et al. Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors. Rare Met. 41, 4116–4126 (2022). https://doi.org/10.1007/s12598-022-02167-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02167-y

Keywords

Navigation