Skip to main content

Advertisement

Log in

Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The conversion of biomass waste into economical and high-performance energy storage devices receives significant attention. Herein, a facile and green method to prepare porous active carbon from walnut septum is applied to the electrode materials of supercapacitors. The effect of chemical etching reagent (KOH) on the microstructure and specific capacitance of the porous carbon are explored. The modified BC-2.0, with a KOH/walnut septum mass ratio of 2:1, exhibits large specific surface area of 1003.9 m2·g−1 with hierarchical micro-mesoporous structures. BC-2.0 reveals a superior specific capacitance of 457 F·g−1 at 1 A·g−1. The flexible symmetric supercapacitor in gel electrolyte (KOH/PVA) exhibits considerable synergetic energy–power output performance. The results indicate that walnut septum is a better precursor to obtain activated carbons relative to other biomass carbon sources. The large mesoporosity after activation effectively boosts the electrochemical properties of supercapacitor. Consequently, the walnut septum has potential to be a superior electrode material for supercapacitors.

Graphical abstract

摘要

将生物质废料转化为经济且高效的储能装置受到了极大的关注。本文利用了一种简便、绿色的方法来制备核桃分心木衍生多孔活性炭, 并首次将其用作超级电容器的电极材料。研究了化学蚀刻试剂(KOH)对多孔碳微观结构和比电容的影响。改良后的BC-2.0, KOH/核桃隔膜质量比为2:1, 具有较高的比表面积(1003.9 m2·g−1) 和层次分明的微孔结构。BC-2.0在1 A·g-1时显示时显示出较高的比电容457 F·g−1。柔性对称电容器在凝胶电解质(KOH/PVA)中表现出了可观的协同能量输出性能。结果表明, 与其他生物质碳源相比, 核桃分心木是一种较好的前驱体。活化后的大介孔率可以有效地提高超级电容器的电化学性能。因此, 核桃分心木有潜力成为超级电容器的优良电极材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347.

    Article  CAS  Google Scholar 

  2. Yan S, Luo S, Feng J, Li P, Guo R, Wang Q, Zhang Y, Liu Y, Bao S. Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Open Chem Eng J. 2020;381:122695.

    CAS  Google Scholar 

  3. Mei P, Kaneti YV, Pramanik M, Takei T, Dag Ö, Sugahara Y, Yamauchi Y. Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy. 2018;52:336.

    Article  CAS  Google Scholar 

  4. Lin S, Wang F, Shao Z. Biomass applied in supercapacitor energy storage devices. J Mater Sci. 2020;56(3):1943.

    Article  CAS  Google Scholar 

  5. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225.

    Google Scholar 

  6. Jiang Y, Li J, Jiang Z, Shi M, Sheng R, Liu Z, Zhang S, Cao Y, Wei T, Fan Z. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon. 2021;175:281.

    Article  CAS  Google Scholar 

  7. Liu Z, Hu J, Shen F, Tian D, Huang M, He J, Zou J, Zhao L, Zeng Y. Trichoderma bridges waste biomass and ultra-high specific surface area carbon to achieve a high-performance supercapacitor. J Power Sources. 2021;497:229880.

    Article  CAS  Google Scholar 

  8. Xie P, Yuan W, Liu X, Peng Y, Yin Y, Li Y, Wu Z. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 2021;36:56.

    Article  Google Scholar 

  9. Young C, Kim J, Kaneti Y, Yamauchi Y. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications. ACS Appl Energy Mater. 2018;1(5):2007.

    Article  CAS  Google Scholar 

  10. Rajesh M, Manikandan R, Park S, Kim BC, Cho WJ, Yu KH, Raj CJ. Pinecone biomass-derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors. Int J Energy Res. 2020;44(11):8591.

    Article  CAS  Google Scholar 

  11. Gu J, Sun L, Zhang Y, Zhang Q, Li X, Si H, Shi Y, Sun C, Gong Y, Zhang Y. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem Eng J. 2020;385:123454.

    Article  CAS  Google Scholar 

  12. Su X, Chen J, Zheng G, Yang J, Guan X, Liu P, Zheng X. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl Surf Sci. 2018;436:327.

    Article  CAS  Google Scholar 

  13. Lian J, Xiong L, Cheng R, Pang D, Tian X, Lei J, He R, Yu X, Duan T, Zhu W. Ultra-high nitrogen content biomass carbon supercapacitors and nitrogen forms analysis. J Alloys Compd. 2019;809:151664.

    Article  CAS  Google Scholar 

  14. Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater. 2018;8(23):1801077.

    Article  CAS  Google Scholar 

  15. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon. 2019;155:706.

    Article  CAS  Google Scholar 

  16. Huang B, Liu Y, Xie Z. Two dimensional nanocarbons from biomass and biological molecules: synthetic strategies and energy related applications. J Energy Chem. 2021;54:795.

    Article  Google Scholar 

  17. Du J, Zhang Y, Lv H, Chen A. Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors. J Alloys Compd. 2021;853:157091.

    Article  CAS  Google Scholar 

  18. Liu L, Zhao H, Lei Y. Review on nanoarchitectured current collectors for pseudocapacitors. Small Methods. 2019;3(8):180031.

    Google Scholar 

  19. Choudhary RB, Ansari S, Majumder M. Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. Renew Sustain Energy Rev. 2021;145:110854.

    Article  CAS  Google Scholar 

  20. Peurifoy SR, Russell JC, Sisto TJ, Yang Y, Roy X, Nuckolls C. Designing three-dimensional architectures for high-performance electron accepting pseudocapacitors. J Am Chem Soc. 2018;140(35):10960.

    Article  CAS  Google Scholar 

  21. Jiang SH, Ding J, Wang RH, Chen FY, Sun J, Deng YX, Li XL. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021;40(12):3520.

    Article  CAS  Google Scholar 

  22. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon. 2017;113:151.

    Article  CAS  Google Scholar 

  23. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A. 2017;5(18):8155.

    Article  CAS  Google Scholar 

  24. Liang X, Liu R, Wu X. Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous Mesoporous Mater. 2021;310:110659.

    Article  CAS  Google Scholar 

  25. Lin G, Ma R, Zhou Y, Liu Q, Dong X, Wang J. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta. 2018;261:49.

    Article  CAS  Google Scholar 

  26. Wang Y, Ding Y, Guo X, Yu G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019;12(9):1978.

    Article  CAS  Google Scholar 

  27. Han X, Xiao G, Wang Y, Chen X, Duan G, Wu Y, Gong X, Wang H. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J Mater Chem A. 2020;8(44):23059.

    Article  CAS  Google Scholar 

  28. Pokharel J, Gurung A, Baniya A, He W, Chen K, Pathak R, Lamsal BS, Ghimire N, Zhou Y. MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochim Acta. 2021;394:139058.

    Article  CAS  Google Scholar 

  29. Deng T, Lu Y, Zhang W, Sui M, Shi X, Wang D, Zheng W. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater. 2018;8(7):1702294.

    Article  CAS  Google Scholar 

  30. Wang C, Xiong Y, Wang H, Sun Q. All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor. J Colloid Interface Sci. 2018;528:349.

    Article  CAS  Google Scholar 

  31. Tan Z, Yang J, Liang Y, Zheng M, Hu H, Dong H, Liu Y, Xiao Y. The changing structure by component: biomass-based porous carbon for high-performance supercapacitors. J Colloid Interface Sci. 2021;585:778.

    Article  CAS  Google Scholar 

  32. Zhang W, Xu J, Hou D, Yin J, Liu D, He Y, Lin H. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci. 2018;530:338.

    Article  CAS  Google Scholar 

  33. Gong Y, Li D, Luo C, Fu Q, Pan C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017;19(17):4132.

    Article  CAS  Google Scholar 

  34. Yu D, Ma Y, Chen M, Dong X. KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors. J Colloid Interface Sci. 2019;537:569.

    Article  CAS  Google Scholar 

  35. Xu M, Huang Q, Sun R, Wang X. Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass. RSC Adv. 2016;6(91):88674.

    Article  CAS  Google Scholar 

  36. Wen X, Lu X, Xiang K, Xiao L, Liao H, Chen W, Zhou W, Chen H. Nitrogen/sulfur co-doped ordered carbon nanoarrays for superior sulfur hosts in lithium-sulfur batteries. J Colloid Interface Sci. 2019;554:711.

    Article  CAS  Google Scholar 

  37. Shi L, Li X, Jia Y, Kong D, He H, Wagner M, Müllen K, Zhi L. Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors. Energy Stor Mater. 2016;5:43.

    Article  CAS  Google Scholar 

  38. Zhu K, Wang Y, Tang JA, Guo S, Gao Z, Wei Y, Chen G, Gao Y. A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Mater Chem Front. 2017;1(5):958.

    Article  CAS  Google Scholar 

  39. Vijayakumar M, Bharathi Sankar A, Sri Rohita D, Rao TN, Karthik M. Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications. ACS Sustain Chem Eng. 2019;7(20):17175.

    Article  CAS  Google Scholar 

  40. Yan S, Wang Q, Luo S, Zhang Y, Liu X, Liu Y, Wang Z, Hao A, Yi T. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. J Power Sources. 2020;461:228151.

    Article  CAS  Google Scholar 

  41. Barzegar F, Bello A, Dangbegnon JK, Manyala N, Xia X. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability. Appl Energy. 2017;207:417.

    Article  CAS  Google Scholar 

  42. Fu F, Yang D, Zhang W, Wang H, Qiu X. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors. Open Chem Eng J. 2020;392:123721.

    CAS  Google Scholar 

  43. Yadav P, Basu A, Suryawanshi A, Game O, Ogale S. Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes. Adv Mater Interfaces. 2016;3(11):1600057.

    Article  CAS  Google Scholar 

  44. Lin X, Yang N, Lü Q, Liu R. Self-nitrogen-doped porous biocarbon from watermelon rind: a high-performance supercapacitor electrode and its improved electrochemical performance using redox additive electrolyte. Energy Technol. 2019;7(3):1800628.

    Article  CAS  Google Scholar 

  45. Du W, Zhang Z, Du L, Fan X, Shen Z, Ren X, Zhao Y, Wei C, Wei S. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. J Alloys Compd. 2019;797:1031.

    Article  CAS  Google Scholar 

  46. Liu C, Chen W, Hong S, Pan M, Jiang M, Wu Q, Mei C. Fast microwave synthesis of hierarchical porous carbons from waste palm boosted by activated carbons for supercapacitors. Nanomaterials. 2019;9(3):405.

    Article  CAS  Google Scholar 

  47. Liu Y, Qu X, Huang G, Xing B, Zhang F, Li B, Zhang C, Cao Y. 3-Dimensional porous carbon with high nitrogen content obtained from longan shell and its excellent performance for aqueous and all-solid-state supercapacitors. Nanomaterials. 2020;10(4):808.

    Article  CAS  Google Scholar 

  48. Ai J, Yang S, Sun Y, Liu M, Zhang L, Zhao D, Wang J, Yang C, Wang X, Cao B. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. J Power Sources. 2021;484:229221.

    Article  CAS  Google Scholar 

  49. Li F, Wang X, Sun R. A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J Mater Chem A. 2017;5(39):20643.

    Article  CAS  Google Scholar 

  50. Yi J, Qing Y, Wu C, Zeng Y, Wu Y, Lu X, Tong Y. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources. 2017;351:130.

    Article  CAS  Google Scholar 

  51. Zheng Z, Gao Q. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol–formaldehyde resins with high performance for supercapacitors. J Power Sources. 2011;196(3):1615.

    Article  CAS  Google Scholar 

  52. Wang D, Wang Y, Chen Y, Liu W, Wang H, Zhao P, Li Y, Zhang J, Dong Y, Hu S, Yang J. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes. Electrochim Acta. 2018;283:132.

    Article  CAS  Google Scholar 

  53. Wei T, Wei X, Yang L, Xiao H, Gao Y, Li H. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage. J Power Sources. 2016;331:373.

    Article  CAS  Google Scholar 

  54. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy. 2015;15:66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874079 and 11775226), the Natural Science Foundation of Hebei Province (Nos. E2018501091, E2020501001 and E2021501029), Hebei Province Key Research and Development Plan Project (No.19211302D), the Natural Science Foundation of Liaoning Province (No. 2019-MS-110) and the Fundamental Research Funds for the Central Universities (No. N2023040 and N2123035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wang or Shao-Hua Luo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Yan, SX., Wang, Q. et al. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met. 41, 2280–2291 (2022). https://doi.org/10.1007/s12598-021-01957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01957-0

Keywords

Navigation