Skip to main content

Advertisement

Log in

Multilayer super-short carbon nanotube/nickel hydroxide nanoflakes for enhanced supercapacitor properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multilayer super-short carbon nanotubes (SSCNTs) could be synthesized by tailoring the raw multiwalled carbon nanotubes with a simple ultrasonic oxidation-cut method. Nanostructured layered nickel hydroxide and SSCNTs have been successfully assembled to form Ni(OH)2/SSCNTs composite by electrostatic force. Compared with pure Ni(OH)2 (665 F g−1), the Ni(OH)2/SSCNTs composite exhibits the much better electrochemical performance with a specific capacitance of 1887 F g−1 at 1 A g−1, and demonstrates a good rate capability and excellent long-term cyclic stability (92 % capacity retention after 3000 cycles). It is the reason that the SSCNTs can form a conductive network onto the surface of Ni(OH)2 nanoflakes, and their excellent electric conductivity is advantaged to the charge transport on the electrode in discharge process and charge process. Therefore, the greatly enhanced capacitive performance of Ni(OH)2/SSCNTs can be attributed to a synergetic effect of Ni(OH)2 and SSCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.B. Pujari, V.C. Lokhande, V.S. Kumbhar, N.R. Chodankar, C.D. Lokhande, J. Mater. Sci. Mater. Electron. 27, 3312–3317 (2016)

    Article  Google Scholar 

  2. S. Konwer, J. Mater. Sci. Mater. Electron. 27, 4139–4146 (2016)

    Article  Google Scholar 

  3. P. Vigneshwaran, M. Kandiban, N. Senthil Kumar, V. Venkatachalam, R. Jayavel, I. Vetha Potheher, J. Mater. Sci. Mater. Electron. 27, 4653–4658 (2016)

    Article  Google Scholar 

  4. R.S. Ingole, B.J. Lokhande, J. Mater. Sci. Mater. Electron. 27, 1363–1369 (2016)

    Article  Google Scholar 

  5. D.U. Lee, J. Fu, M.G. Park, H. Liu, A. Ghorbani Kashkooli, Z. Chen, Nano Lett. 16, 1794–1802 (2016)

    Article  Google Scholar 

  6. M. Kim, I. Oh, H. Ju, J. Kim, Phys. Chem. Chem. Phys. 18, 9124–9132 (2016)

    Article  Google Scholar 

  7. S. Ghasemi, M. Jafari, F. Ahmadi, Electrochim. Acta 210, 225–235 (2016)

    Article  Google Scholar 

  8. R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11, 211–218 (2015)

    Article  Google Scholar 

  9. D. Ghosh, M. Mandal, C.K. Das, Langmuir 31, 7835–7843 (2015)

    Article  Google Scholar 

  10. H. Zhang, Y. Ye, Z. Li, Y. Chen, P. Deng, Y. Li, J. Mater. Sci. 51, 2877–2885 (2016)

    Article  Google Scholar 

  11. H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818–3823 (2011)

    Article  Google Scholar 

  12. Y. Liu, G. Yuan, Z. Jiang, Z. Yao, M. Yue, J. Alloy. Compd. 618, 37–43 (2015)

    Article  Google Scholar 

  13. J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, J. Mater. Chem. 22, 5656–5665 (2012)

    Article  Google Scholar 

  14. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, A.C.S. Appl, Mater. Interfaces 5, 2446–2454 (2013)

    Article  Google Scholar 

  15. J. Patiño, N. López-Salas, M.C. Gutiérrez, D. Carriazo, M.L. Ferrer, F. del Monte, J. Mater. Chem. A 4, 1251–1263 (2016)

    Article  Google Scholar 

  16. Y.G. Wang, Y. Le, Y.Y. Xia, J. Electrochem. Soc. 153, A743–A748 (2006)

    Article  Google Scholar 

  17. M. Shahid, J. Liu, I. Shakir, M.F. Warsi, M. Nadeem, Y.U. Kwon, Electrochim. Acta 85, 243–247 (2012)

    Article  Google Scholar 

  18. H. Cheng, A.D. Su, S. Li, S.T. Nguyen, L. Lu, C.Y.H. Lim, M.D. Hai, Chem. Phys. Lett. 601, 168–173 (2014)

    Article  Google Scholar 

  19. F. Zeng, Y. Kuang, N. Zhang, Z. Huang, Y. Pan, Z. Hou, H. Zhou, C. Yan, O.G. Schmidt, J. Power Sources 247, 396–401 (2014)

    Article  Google Scholar 

  20. P. Lu, L. Fei, D. Xue, Y. Hong, Y. Liu, Electrochim. Acta 78, 1–10 (2012)

    Article  Google Scholar 

  21. F. Gu, X. Cheng, S. Wang, X. Wang, P.S. Lee, Small 11, 2044–2050 (2015)

    Article  Google Scholar 

  22. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  23. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, Science 323, 610–613 (2009)

    Article  Google Scholar 

  24. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095–14107 (2000)

    Article  Google Scholar 

  25. R. Kostecki, F. McLarnon, J. Electrochem. Soc. 144, 485–493 (1997)

    Article  Google Scholar 

  26. X. Zhou, Z. Xia, Z. Zhang, Y. Ma, Y. Qu, J. Mater. Chem. A 2, 11799–11806 (2014)

    Article  Google Scholar 

  27. K.W. Nam, K.H. Kim, E.S. Lee, W.S. Yoon, X.Q. Yang, K.B. Kim, J. Power Sources 182, 642–652 (2008)

    Article  Google Scholar 

  28. P. Hui, J. Li, P.F. Yuan, Nanoscale Res. Lett. 5, 654–668 (2010)

    Article  Google Scholar 

  29. H. Chai, X. Chen, D. Jia, W. Zhou, Rare Met. 30, 85–89 (2011)

    Article  Google Scholar 

  30. N.W. Duffy, W. Baldsing, A.G. Pandolfo, Electrochim. Acta 54, 535–539 (2008)

    Article  Google Scholar 

  31. H.K. Jeong, M. Jin, E.J. Ra, K.Y. Sheem, G.H. Han, S. Arepalli, Y.H. Lee, ACS Nano 4, 1162–1166 (2010)

    Article  Google Scholar 

  32. H. Ye, Y. Cheng, T. Hobson, J. Liu, Nano Lett. 10, 2727–2733 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51302108 and 21571084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Duan, F. & Chen, M. Multilayer super-short carbon nanotube/nickel hydroxide nanoflakes for enhanced supercapacitor properties. J Mater Sci: Mater Electron 28, 2325–2334 (2017). https://doi.org/10.1007/s10854-016-5800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5800-y

Keywords

Navigation