Skip to main content

Advertisement

Log in

Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (KIBs) are regarded as one of the most promising replacements for lithium-ion batteries because of their low cost and high performance. Exploring suitable anode materials to stably and effectively store potassium is critical for the development of KIBs. Given their high theoretical specific capacity, cobalt-based compounds have been extensively investigated as an anode material in recent years; however, specific reviews summarizing the research progress in the application of cobalt-based compounds as anode materials for high-performance KIBs are lacking. Consequently, this review systematically summarizes the recent states of cobalt-based anode materials in KIBs starting at the potassium storage mechanism, followed by strategies and applications to improve the electrochemical performance. The current challenges are also discussed, and corresponding prospects are proposed. This work may facilitate the realization of various applications of cobalt-based compound anodes for high-performance rechargeable batteries and is expected to provide some guidance for developing other metal-based compounds for KIBs anodes.

Graphical abstract

摘要

钾离子电池 (KIBs) 因其低成本和高性能而被认为是最有希望的锂离子电池替代品之一。探索合适的负极材料以稳定有效地储存钾对于KIBs的发展至关重要。鉴于其较高的理论比容量, 钴基化合物近年来作为负极材料得到了广泛的研究。然而, 缺乏总结钴基化合物作为高性能 KIBs负极材料研究进展的具体综述。因此, 本综述从钾的储存机制以及提高电化学性能的策略和应用开始系统地总结了钴基负极材料在KIBs中的最新状况, 还讨论了当前的挑战, 并提出了相应的前景。这项工作有助于实现钴基复合负极在高性能可充电电池中的各种应用, 并有望为开发其他用于 KIBs负极的金属基化合物提供一些指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [14]. Copyright 2020, Wiley–VCH

Fig. 3

Reproduced with permission from Ref. [39]. Copyright 2019, Elsevier

Fig. 4

Reproduced with permission from Ref. [51]. Copyright 2017, Wiley–VCH

Fig. 5

Reproduced with permission from Ref. [27]. Copyright 2021, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [78]. Copyright 2021, American Chemical Society

Fig. 7

Copyright 2020, Elsevier

Fig. 8

Reproduced with permission from Ref. [96]. Copyright 2020, American Chemical Society

Similar content being viewed by others

References

  1. Isildak Ö, Oguz Ö, Meliha G. Development of chromium(III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications. J Anal Test. 2020;4(4):273.

    Article  Google Scholar 

  2. Min X, Xiao J, Fang M, Wang W, Zhao Y, Liu Y, Abdelkader A, Xi K, Kumar R, Huang Z. Potassium-ion batteries: outlook on present and future technologies. Energy Environ Sci. 2021;14(4):2186.

    Article  CAS  Google Scholar 

  3. Dhir S, Wheeler S, Capone I, Pasta M. Outlook on K-ion batteries. Chem. 2020;6(10):2442.

    Article  CAS  Google Scholar 

  4. Wang B, Yuan F, Wang J, Zhang D, Li W, Wang Q. Multi-forks hierarchical porous amorphous carbon with N-doping for high-performance potassium-ion batteries. Electrochim Acta. 2020;354:136627.

    Article  CAS  Google Scholar 

  5. Wang F, Liu Y, Wei H, Li T, Xiong X, Wei S, Ren F, Volinsk AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448.

    Article  CAS  Google Scholar 

  6. Wu M, Xu B, Zhang Y, Qi S, Ni W, Hu J, Ma J. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2021;381:122558.

    Article  CAS  Google Scholar 

  7. Wang B, Yuan F, Wang W, Zhang D, Sun H, Xi K. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. J Mater Chem A. 2019;7(45):25845.

    Article  CAS  Google Scholar 

  8. Lee B, Kim M, Kim S, Nanda J, Kwon SJ, Jang HD. High capacity adsorption-dominated potassium and sodium ion storage in activated crumpled graphene. Adv Energy Mater. 2020;10(17):1903280.

    Article  CAS  Google Scholar 

  9. Wang B, Yuan F, Li W, Wang Q, Ma X, Gu L. Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy. 2020;75:104979.

    Article  CAS  Google Scholar 

  10. Han M, Lv Z, Hou L, Zhou S, Cao H, Chen H. Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus. J Power Sources. 2020;451:227769.

    Article  CAS  Google Scholar 

  11. Zhou J, Dong A, Du L, Yang C, Ye L, Wang X. Mn-doped ZnO microspheres as cathode materials for aqueous zinc ion batteries with ultrastability up to 10000 cycles at a large current density. Chem Eng J. 2021;421:127770.

    Article  CAS  Google Scholar 

  12. Li C, Hu X, Hu B. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim Acta. 2017;253:439.

    Article  CAS  Google Scholar 

  13. Zhu K, Li Z, Jin T, Jiao L. Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries. J Mater Chem A. 2020;8(40):21103.

    Article  CAS  Google Scholar 

  14. Yi Y, Zhao W, Zeng Z, Wei C, Lu C, Shao Y, Guo W, Dou S, Sun J. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small. 2020;16(7):1906566.

    Article  CAS  Google Scholar 

  15. Guo R, Liu X, Wen B, Liu F, Meng J, Wu P. Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial Coulombic efficiency. Nano-Micro Lett. 2020;12(1):1.

    Article  CAS  Google Scholar 

  16. Li D, Sun Q, Zhang Y, Dai X, Ji F, Li K. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021;14(12):1.

    Article  Google Scholar 

  17. Wang G, Xiong X, Xie D, Lin Z, Zheng J, Zheng F. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J Mater Chem A. 2018;6(47):24317.

    Article  CAS  Google Scholar 

  18. Li H, Zhu Y, Zhao K, Fu Q, Wang K, Wang Y, Wang N, Lv X, Jiang H, Chen L. Surface modification of coordination polymers to enable the construction of CoP/N, P-codoped carbon nanowires towards high-performance lithium storage. J Colloid Interface Sci. 2020;565:503.

    Article  CAS  Google Scholar 

  19. Hao S, Li H, Zhao Z, Wang X. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-Ion batteries. ChemElectroChem. 2019;6(22):5712.

    Article  CAS  Google Scholar 

  20. Ou H, Xie Q, Yang Q, Zhou J, Akif Z, Lin X, Chen X, Reddy R, Ma G. Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm. 2021;23(30):5140.

    Article  CAS  Google Scholar 

  21. Chen M, Wang E, Liu Q, Guo X, Chen W, Chou S, Dou S. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019;19:163.

    Article  Google Scholar 

  22. Tan H, Feng Y, Rui X, Yu Y, Huang S. Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries. Small Methods. 2019;4(1):1900563.

    Article  CAS  Google Scholar 

  23. Yang W, Zhou J, Wang S, Zhang W, Wang Z, Lv F. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci. 2019;12(5):1605.

    Article  CAS  Google Scholar 

  24. Wang B, Yuan F, Yu Q, Li W, Sun H, Zhang L. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021;38:329.

    Article  Google Scholar 

  25. Zhou D, Yi J, Zhao X, Yang J, Lu H, Fan LZ. Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion storage. Chem Eng J. 2021;413:127508.

    Article  CAS  Google Scholar 

  26. Liu Q, Hu Z, Liang Y, Li L, Zou C, Jin H, Wang S, Lu H, Gu Q, Chou S, Liu Y, Dou S. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed. 2020;59(13):5159.

    Article  CAS  Google Scholar 

  27. Liu Y, Deng Q, Li Y, Li Y, Zhong W, Hu J, Ji X, Yang C, Lin Z, Huang K. CoSe@N-doped carbon nanotubes as a potassium-ion battery anode with high initial Coulombic efficiency and superior capacity retention. ACS Nano. 2021;15(1):1121.

    Article  CAS  Google Scholar 

  28. Zhu P, Zhang Z, Zhao P, Zhang B, Cao X, Yu J. Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. Carbon. 2019;142:269.

    Article  CAS  Google Scholar 

  29. Zhao X, Luo D, Wang Y, Liu ZH. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res. 2019;12(11):2872.

    Article  CAS  Google Scholar 

  30. Sun H, Wang J, Li W, Yuan F, Wang Q, Zhang D. Spanish-dagger shaped CoP blooms decorated N-doped carbon branch anode for high-performance lithium and sodium storage. Electrochim Acta. 2021;388:138628.

    Article  CAS  Google Scholar 

  31. Li H, Wang X, Zhao Z, Pathak R, Hao S, Qiu X. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage. J Mater Sci Technol. 2022;99:184.

    Article  Google Scholar 

  32. Chang Q, Jin Y, Jia M, Yuan Q, Zhao C, Jia M. Sulfur-doped CoP@nitrogen-doped porous carbon hollow tube as an advanced anode with excellent cycling stability for sodium-ion batteries. J Colloid Interface Sci. 2020;575:61.

    Article  CAS  Google Scholar 

  33. Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.

    Article  CAS  Google Scholar 

  34. Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.

    Article  CAS  Google Scholar 

  35. Liu Y, Que X, Wu X, Yuan Q, Wang H, Wu J. ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery. Mater Today Chem. 2020;17:100284.

    Article  CAS  Google Scholar 

  36. Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.

    Article  CAS  Google Scholar 

  37. Jiang Y, Liang J, Yue L, Luo Y, Liu Q, Kong Q, Kang X, Asiri AM, Zhou K, Sun X. Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. J Colloid Interface Sci. 2021;604:319.

    Article  CAS  Google Scholar 

  38. Zhao X, Zhou D, Chen M, Yang J, Fan LZ. Achieving the robust immobilization of CoP nanoparticles in cellulose nanofiber network-derived carbon: via chemical bonding for a stable potassium ion storage. RSC Adv. 2020;10(72):44611.

    Article  CAS  Google Scholar 

  39. Miao W, Zhao X, Wang R, Liu Y, Li L, Zhang Z. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J Colloid Interface Sci. 2019;556:432.

    Article  CAS  Google Scholar 

  40. Ye J, Xing K, Zhang Q, Xia G, Yang X, Zheng Z. Se-doped CoP nanoparticles confined in 3D porous carbon frameworks with enlarged interlayer spacings boost potassium-ion storage. Appl Surf Sci. 2021;543:148867.

    Article  CAS  Google Scholar 

  41. Liu Q, Hu Z, Liang Y, Li L, Zou C, Jin H. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chemie. 2020;132(13):5197.

    Article  Google Scholar 

  42. Han Y, Li W, Zhou K, Wu X, Wu H, Wu X, Shi Q, Diao G, Chen M. Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. ChemNanoMat. 2020;6(1):132.

    Article  CAS  Google Scholar 

  43. Yang C, Feng J, Zhang Y, Yang Q, Li P, Arlt T, Lai F, Wang J, Yin C, Wang W, Qian G, Cui L, Yang W, Chen Y, Manke I. Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small. 2019;15(44):1903720.

    Article  CAS  Google Scholar 

  44. Yu Q, Hu J, Qian C, Gao Y, Wang W. CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. J Solid State Electrochem. 2018;23(1):27.

    Article  CAS  Google Scholar 

  45. Yang J, Xi L, Tang J, Chen F, Wu L, Zhou X. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries. Electrochim Acta. 2016;217:274.

    Article  CAS  Google Scholar 

  46. De B, Balamurugan J, Kim NH, Lee JH. Enhanced electrochemical and photocatalytic performance of core-shell CuS@carbon quantum dots@carbon hollow nanospheres. ACS Appl Mater Interfaces. 2017;9(3):2459.

    Article  CAS  Google Scholar 

  47. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc. 2013;135(20):7394.

    Article  CAS  Google Scholar 

  48. Wang R, Han M, Zhao Q, Ren Z, Xu C, Hu N. Construction of 3D CoO quantum dots/graphene hydrogels as binder-free electrodes for ultra-high rate energy storage applications. Electrochim Acta. 2017;243:152.

    Article  CAS  Google Scholar 

  49. Firmiano EGS, Cordeiro MAL, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem Commun. 2012;48(62):7687.

    Article  CAS  Google Scholar 

  50. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano. 2012;6(2):1074.

    Article  CAS  Google Scholar 

  51. Gao H, Zhou T, Zheng Y, Zhang Q, Liu Y, Chen J, Liu H, Guo Z. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv Funct Mater. 2017;27(43):1702634.

    Article  CAS  Google Scholar 

  52. Miao W, Zhang Y, Li H, Zhang Z, Li L, Yu Z. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J Mater Chem A. 2019;7(10):5504.

    Article  CAS  Google Scholar 

  53. Hu J, Wang B, Yu Q, Zhang Y, Zhang D, Li Y. Amorphous cobalt sulfide/N-doped carbon core/shell nanoparticles as an anode material for potassium-ion storage. J Mater Sci. 2020;55(31):15213.

    Article  CAS  Google Scholar 

  54. Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium-ion batteries. Nano Energy. 2015;12:528.

    Article  CAS  Google Scholar 

  55. Ma G, Xu X, Feng Z, Hu C, Zhu Y, Yang X. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020;13(3):802.

    Article  CAS  Google Scholar 

  56. Ramos M, Berhault G, Ferrer DA, Torres B, Chianelli RR. HRTEM and molecular modeling of the MoS2-Co9S8 interface: understanding the promotion effect in bulk HDS catalysts. Catal Sci Technol. 2012;2(1):164.

    Article  CAS  Google Scholar 

  57. Wang Y, Kang W, Cao D, Zhang M, Kang Z, Xiao Z. A yolk-shelled Co9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J Mater Chem A. 2018;6(11):4776.

    Article  CAS  Google Scholar 

  58. Bai J, Meng T, Guo D, Wang S, Mao B, Cao M. Co9S8@MoS2 core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl Mater Interfaces. 2018;10(2):1678.

    Article  CAS  Google Scholar 

  59. Geng H, Yang J, Dai Z, Zhang Y, Zheng Y, Yu H. Co9S8/MoS2 yolk–shell spheres for advanced Li/Na storage. Small. 2017;13(14):1603490.

    Article  CAS  Google Scholar 

  60. Li Y, Qian J, Zhang M, Wang S, Wang Z, Li M. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv Mater. 2020;32(47):2005802.

    Article  CAS  Google Scholar 

  61. Luo W, Li F, Li Q, Wang X, Yang W, Zhou L. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl Mater Interfaces. 2018;10(8):7201.

    Article  CAS  Google Scholar 

  62. Zhang C, Han F, Wang F, Liu Q, Zhou D, Zhang F. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020;24:208.

    Article  Google Scholar 

  63. Guo C, Zhang W, Liu Y, He J, Yang S, Liu M. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Funct Mater. 2019;29(29):1901925.

    Article  CAS  Google Scholar 

  64. Chen X, Liu Q, Bai T, Wang W, He F, Ye M. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem Eng J. 2021;409:127237.

    Article  CAS  Google Scholar 

  65. Zhang W, Chen J, Liu Y, Liu S, Li X, Yang K, Li L. Decoration of hollow nitrogen-doped carbon nanofibers with tapered rod-shape NiCo2S4 as a 3D structural high-rate and long-lifespan self-supported anode material for potassium-ion batteries. J Alloy Compd. 2020;823:153631.

    Article  CAS  Google Scholar 

  66. Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138.

    Article  CAS  Google Scholar 

  67. Li P, Wang W, Gong S, Lv F, Huang H, Luo M. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries. ACS Appl Mater Interfaces. 2018;10(44):37974.

    Article  CAS  Google Scholar 

  68. Tian Z, Chui N, Lian R, Yang Q, Wang W, Yang C. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 2020;27:591.

    Article  Google Scholar 

  69. Cho JS, Won JM, Lee JK, Kang YC. Design and synthesis of multiroom-structured metal compounds-carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy. 2016;26:466.

    Article  CAS  Google Scholar 

  70. Zhang K, Park M, Zhou L, Lee GH, Li W, Kang YM. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater. 2016;26(37):6728.

    Article  CAS  Google Scholar 

  71. Ko YN, Choi SH, Kang YC. Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl Mater Interfaces. 2016;8(10):6449.

    Article  CAS  Google Scholar 

  72. Hu H, Zhang J, Guan B, Lou XWD. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew Chem Int Ed. 2016;55(33):9514.

    Article  CAS  Google Scholar 

  73. Wang M, Guo H, An C, Zhang Y, Li W, Zhang Z. In-situ carbon coated CoSe microrods as a high-capacity anode for sodium ion batteries. J Alloys Compd. 2020;820:153090.

    Article  CAS  Google Scholar 

  74. Li Z, Zhang LY, Zhang L, Huang J, Liu H. ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries. Nanoscale Res Lett. 2019;14(1):1.

    Article  CAS  Google Scholar 

  75. Huang Q, Fan X, Ou X, Wang H, Wu L, Yang C. Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries. J Colloid Interface Sci. 2021;604:157.

    Article  CAS  Google Scholar 

  76. Hu J, Wang B, Yu Q, Zhang D, Zhang Y, Li Y, Wang W. CoSe2/N-doped carbon porous nanoframe as an anode material for potassium-ion storage. Nanotechnol. 2020;31(39):395403.

  77. Yang SH, Park SK, Kang YC. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 2021;13(1):1.

    Article  Google Scholar 

  78. Suo G, Zhang J, Li D, Yu Q, Wang W, He M. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem Eng J. 2020;388:124396.

    Article  CAS  Google Scholar 

  79. Yuan F, Zhang W, Zhang D, Wang Q, Li Z, Li W. Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. Nanoscale. 2021;13(12):5965.

    Article  CAS  Google Scholar 

  80. Jin T, Han Q, Jiao L. Binder-free electrodes for advanced sodium-ion batteries. Adv Mater. 2020;32(3):1806304.

    Article  CAS  Google Scholar 

  81. Ma G, Li C, Liu F, Majeed MK, Feng Z, Cui Y. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater Today Energy. 2018;10:241.

    Article  Google Scholar 

  82. Liu Z, Han K, Li P, Wang W, He D, Tan Q. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 2019;11(1):1.

    Article  CAS  Google Scholar 

  83. Li D, Zhang J, Suo G, Yu Q, Wang W, Feng L. Hollow Co0.85Se cubes encapsulated in graphene for enhanced potassium storage. J Electroanal Chem. 2020;864:114100.

    Article  CAS  Google Scholar 

  84. Atangana EC, Huang H, Hong H, Liu G, Zhang L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020;24:167.

    Article  Google Scholar 

  85. Hussain N, Li M, Tian B, Wang H. Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation. Adv Mater. 2021;33(26):2102164.

    Article  CAS  Google Scholar 

  86. Xiong T, Chen JS, Lou XW, Zeng HC. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)0.11·H2O and their lithium-storage properties. Adv Funct Mater. 2012;22(4):861.

    Article  CAS  Google Scholar 

  87. Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM. The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc. 2002;149(3):A234.

    Article  CAS  Google Scholar 

  88. Du H, Huang K, Li M, Xia Y, Sun Y, Yu M. Gas template-assisted spray pyrolysis: a facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res. 2018;11:1490.

    Article  CAS  Google Scholar 

  89. Xu M, Xia Q, Yue J, Zhu X, Guo Q, Zhu J. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv Funct Mater. 2019;29(6):1807377.

    Article  CAS  Google Scholar 

  90. Wang J, Wang H, Li F, Xie S, Xu G, She Y. Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A. 2019;7(7):3024.

    Article  CAS  Google Scholar 

  91. Kim H, Kim H, Kim H, Kim J, Yoon G, Lim K. Understanding origin of voltage hysteresis in conversion reaction for Na rechargeable batteries: the case of cobalt oxides. Adv Funct Mater. 2016;26(28):5042.

    Article  CAS  Google Scholar 

  92. Xu GL, Sheng T, Chong L, Ma T, Sun CJ, Zuo X. Insights into the distinct lithiation/sodiation of porous cobalt oxide by in operando synchrotron X-ray techniques and Ab initio molecular dynamics simulations. Nano Lett. 2017;17(2):953.

    Article  CAS  Google Scholar 

  93. Santangelo S, Fiore M, Pantò F, Stelitano S, Marelli M, Frontera P. Electro-spun Co3O4 anode material for Na-ion rechargeable batteries. Solid State Ionics. 2017;309:41.

    Article  CAS  Google Scholar 

  94. Wang Y, Wang C, Wang Y, Liu H, Huang Z. Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal-organic framework. J Mater Chem A. 2016;4(15):5428.

    Article  CAS  Google Scholar 

  95. Deng J, Lv X, Zhong J, Sun X. Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries. Appl Surf Sci. 2019;475:446.

    Article  CAS  Google Scholar 

  96. Adekoya D, Chen H, Hoh HY, Gould T, Balogun MSJT, Lai C, Zhao H, Zhang S. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultra-stable potassium Storage. ACS Nano. 2020;14(4):5027.

    Article  CAS  Google Scholar 

  97. Jiang H, An Y, Tian Y, Feng J, Tian X. Scalable and controlled synthesis of 2D nanoporous Co3O4 from bulk alloy for potassium ion batteries. Mater Technol. 2020;35(10):594.

    Article  CAS  Google Scholar 

  98. Wen J, Xu L, Wang J, Xiong Y, Ma J, Jiang C. Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries. J Power Sources. 2020;474:228491.

    Article  CAS  Google Scholar 

  99. Hou X, Wang X, Liu B, Wang Q, Luo T, Chen D, Shen G. Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale. 2014;6(15):8858.

    Article  CAS  Google Scholar 

  100. Wu J, Mi R, Li S, Guo P, Mei J, Liu H, Lau WM, Liu LM. Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Adv. 2015;5(32):25304.

    Article  CAS  Google Scholar 

  101. Huang R, Lin J, Zhou J, Fan E, Zhang X, Chen R, Wu F, Li L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small. 2021;17(11):2007597.

    Article  CAS  Google Scholar 

  102. Tan Q, Zhao W, Han K, Li P, Wang W, He D, Liu Z, Yu Q, Qin M, Qu X. The multi-yolk/shell structure of FeP@foam-like graphenic scaffolds: strong P-C bonds and electrolyte- and binder-optimization boost potassium storage. J Mater Chem A. 2019;7(26):15673.

    Article  CAS  Google Scholar 

  103. Jiang H, Huang L, Wei Y, Wang B, Wu H, Zhang Y, Liu H, Dou S. Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 2019;11(1):1.

    Article  CAS  Google Scholar 

  104. Liu Y, Yang C, Li Y, Zheng F, Li Y, Deng Q, Zhong W, Wang G, Liu T. FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem Eng J. 2020;393:124590.

    Article  CAS  Google Scholar 

  105. Wang X, Ma J, Wang J, Li X. N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. J Alloy Compd. 2021;821:153268.

    Article  CAS  Google Scholar 

  106. Zhang Z, Wu C, Chen Z, Li H, Cao H, Luo X, Fang Z, Zhu Y. Spatially confined synthesis of flexible and hierarchically porous three-dimensional graphene/FeP hollow nanospheres composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A. 2020;8(6):3369.

    Article  CAS  Google Scholar 

  107. Han K, Zhao W, Yu Q, Liu Z, Li P, Wang W, Song L, An F, Cao P, Qu X. Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphemic matrix for high-rate and ultrastable potassium ion storage. J Power Sources. 2020;469:228429.

    Article  CAS  Google Scholar 

  108. Li D, Dai L, Ren X, Ji F, Sun Q, Zhang Y, Ci L. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ Sci. 2021;14(1):424.

    Article  CAS  Google Scholar 

  109. Sun Q, Li D, Dai L, Liang Z, Ci L. Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes. Small. 2020;16(45):2005023.

    Article  CAS  Google Scholar 

  110. Li D, Zhang J, Ahmed S, Suo G, Wang W, Feng L, Hou X, Yang Y, Ye X, Zhang L. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J Colloid Interface Sci. 2021;574:174.

    Article  CAS  Google Scholar 

  111. Cao K, Wang S, Jia Y, Xu D, Liu H, Huang K, Jing Q, Jiao L. Promoting K ion storage property of SnS2 anode by structure engineering. Chem Eng J. 2021;406:126902.

    Article  CAS  Google Scholar 

  112. Bin D, Duan S, Lin X, Liu L, Liu Y, Xu Y, Sun Y, Tao X, Cao A, Wan L. Structural engineering of SnS2/graphene nanocomposite for high-performance K-ion battery anode. Nano Energy. 2019;60:912.

    Article  CAS  Google Scholar 

  113. Wang Z, Dong K, Wang D, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Shi C, Zhao N. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J Power Sources. 2019;441:227191.

    Article  CAS  Google Scholar 

  114. Jia B, Yu Q, Zhao Y, Qin M, Wang W, Liu Z, Lao C, Liu Y, Wu H, Zhang Z, Qu X. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv Funct Mater. 2018;28(40):1803409.

    Article  CAS  Google Scholar 

  115. Zhang J, Cui P, Gu Y, Wu D, Tao S, Qian B, Chu W, Song L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage. Adv Mater Interfaces. 2019;6(22):1901066.

    Article  CAS  Google Scholar 

  116. Hu J, Xie Y, Zhou X, Zhang Z. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage. ACS Appl Mater Inter. 2019;12(1):1232.

    Article  CAS  Google Scholar 

  117. Li N, Sun L, Wang K, Zhang J, Liu X. Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries. Electrochim Acta. 2020;360:136983.

    Article  CAS  Google Scholar 

  118. Yan Z, Huang Z, Zhou H, Yang X, Li S, Zhang W, Wang F, Kuang Y. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium-ion batteries. J Energy Chem. 2021;54:571.

    Article  Google Scholar 

  119. Liu Y, Zhai Y, Wang N, Zhang Y, Lu Z, Xue P, Bai L, Guo M, Huang D, Bai Z. Ultrathin MoSe2 nanosheets confined in N-doped macroporous carbon frame for enhanced potassium ion storage. ChemistrySelect. 2019;5(8):2412.

    Article  CAS  Google Scholar 

  120. Wang H, Zhai D, Kang F. Solid electrolyte interphase (SEI) in potassium ion batteries. Energy Environ Sci. 2020;13(12):4583.

    Article  CAS  Google Scholar 

  121. Wang B, Zhang Z, Yuan F, Zhang D, Wang Q, Li W, Li Z, Wang W. An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium ion battery. Chem Eng J. 2022;428:131093.

    Article  CAS  Google Scholar 

  122. Yang M, Kong Q, Feng W, Yao W. N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon. 2021;176:71.

    Article  CAS  Google Scholar 

  123. Wang B, Gu L, Yuan F, Zhang D, Sun H, Wang J, Wang Q, Wang H, Li Z. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery. Chem Eng J. 2022;432:134321.

    Article  CAS  Google Scholar 

  124. Yuan F, Sun H, Zhang D, Li Z, Wang J, Wang H, Wang Q, Wu Y, Wang B. Enhanced electron transfer and ion storage in phosphorus/nitrogen co-doped 3D interconnected carbon nanocage toward potassium-ion battery. J Colloid Interface Sci. 2022;611:513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22008053 and 52002111), Key Research and Development Program of Hebei Province (Nos. 20310601D and 205A4401D), the Natural Science Foundation of Hebei Province (No. B2021208061), the High Level Talents Funding of Hebei Province (No. A202005006), the Science Foundation of University of Hebei Province (Nos. BJ2020026 and BJ2021001), Liaoning Revitalization Talents Program (No. XLYC2008014). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang, Yu-Sheng Wu or Yi-min A. Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Shao, YC., Wang, B. et al. Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Met. 41, 3301–3321 (2022). https://doi.org/10.1007/s12598-022-02052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02052-8

Keywords

Navigation