Skip to main content

Geographic modeling and simulation systems for geographic research in the new era: Some thoughts on their development and construction

Abstract

Regionality, comprehensiveness, and complexity are regarded as the basic characteristics of geography. The exploration of their core connotations is an essential way to achieve breakthroughs in geography in the new era. This paper focuses on the important method in geographic research: Geographic modeling and simulation. First, we clarify the research requirements of the said three characteristics of geography and its potential to address geo-problems in the new era. Then, the supporting capabilities of the existing geographic modeling and simulation systems for geographic research are summarized from three perspectives: Model resources, modeling processes, and operational architecture. Finally, we discern avenues for future research of geographic modeling and simulation systems for the study of regional, comprehensive and complex characteristics of geography. Based on these analyses, we propose implementation architecture of geographic modeling and simulation systems and discuss the module composition and functional realization, which could provide theoretical and technical support for geographic modeling and simulation systems to better serve the development of geography in the new era.

References

  1. Allen D W. 2011. Getting to Know ArcGIS ModelBuilder. Redland: Esri Press

    Google Scholar 

  2. Almoradie A, Cortes V J, Jonoski A. 2015. Web-based stakeholder collaboration in flood risk management. J Flood Risk Manage, 8: 19–38

    Article  Google Scholar 

  3. Anselin L. 1989. What is special about spatial data? Alternative perspectives on spatial data Analysis. Technical Report 89–4. Santa Barbara: University of California

    Google Scholar 

  4. Badham J, Elsawah S, Guillaume J H, Hamilton S H, Hunt R J, Jakeman A J, Pierce S A, Snow V O, Babbar-Sebens M, Fu B H, Gober P, Hill M C, Iwanaga T, Loucks D P, Merritt W S, Peckham S D, Richmond A K, Zare F, Ames D, Bammer G. 2019. Effective modeling for integrated water resource management: A guide to contextual practices by phases and steps and future opportunities. Environ Model Softw, 116: 40–56

    Article  Google Scholar 

  5. Bandaragoda C, Castronova A, Istanbulluoglu E, Strauch R, Nudurupati S S, Phuong J, Adams J M, Gasparini N M, Barnhart K, Hutton E W H, Hobley D E J, Lyons N J, Tucker G E, Tarboton D G, Idaszak R, Wang S. 2019. Enabling collaborative numerical modeling in earth sciences using knowledge infrastructure. Environ Model Softw, 120: 104424

    Article  Google Scholar 

  6. Barton C M, Alberti M, Ames D, Atkinson J A, Bales J, Burke E, Chen M, Diallo S Y, Earn D J D, Fath B, Feng Z, Gibbons C, Hammond R, Heffernan J, Houser H, Hovmand P S, Kopainsky B, Mabry P L, Mair C, Meier P, Niles R, Nosek B, Osgood N, Pierce S, Polhill J G, Prosser L, Robinson E, Rosenzweig C, Sankaran S, Stange K, Tucker G. 2020. Call for transparency of COVID-19 models. Science, 368: 482–483

    Article  Google Scholar 

  7. Basco-Carrera L, Warren A, van Beek E, Jonoski A, Giardino A. 2017. Collaborative modelling or participatory modelling? A framework for water resources management. Environ Model Softw, 91: 95–110

    Article  Google Scholar 

  8. Belete G F, Voinov A, Morales J. 2017. Designing the Distributed Model Integration Framework—DMIF. Environ Model Softw, 94: 112–126

    Article  Google Scholar 

  9. Bennett N D, Croke B F, Guariso G, Guillaume J H, Hamilton S H, Jakeman A J, Marsili-Libelli S, Newham L T H, Norton J P, Perrin C, Pierce S A, Robson B, Seppelt R, Voinov A A, Fath B D, Andreassian V. 2013. Characterising performance of environmental models. Environ Model Softw, 40: 1–20

    Article  Google Scholar 

  10. Brown J H, Stevens G C, Kaufman D M. 1996. The geographic range: Size, shape, boundaries, and internal structure. Annu Rev Ecol Syst, 27: 597–623

    Article  Google Scholar 

  11. Chen C S, Liu H D, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J Atmos Ocean Technol, 20: 159–186

    Article  Google Scholar 

  12. Chen F H, Fu B J, Xia J, Wu D, Wu S H, Zhang Y L, Sun H, Liu Y, Fang X M, Qin B Q, Li X, Zhang T J, Liu B Y, Dong Z B, Hou S G, Tian L D, Xu B Q, Dong G H, Zheng J Y, Yang W, Wang X, Li Z J, Wang F, Hu Z B, Wang J, Liu J B, Chen J H, Huang W, Hou J Z, Cai Q F, Long H, Jiang M, Hu Y X, Feng X M, Mo X G, Yang X Y, Zhang D J, Wang X H, Yin Y H, Liu X C. 2019. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Sci China Earth Sci, 62: 1665–1701

    Article  Google Scholar 

  13. Chen M, Sheng Y H, Wen Y N, Tao H, Guo F. 2009. Semantics guided geographic conceptual modeling environment based on icons (in Chinese). Geogr Res, 28: 705–715

    Google Scholar 

  14. Chen M, Tao H, Lin H, Wen Y N. 2011. A visualization method for geographic conceptual modelling. Ann GIS, 17: 15–29

    Article  Google Scholar 

  15. Chen M, Lin H. 2018. Virtual geographic environments (VGEs): Originating from or beyond virtual reality (VR)? Int J Digital Earth, 11: 329–333

    Article  Google Scholar 

  16. Chen M, Yang C, Hou T, Lü G N, Wen Y N, Yue S S. 2018a. Developing a data model for understanding geographical analysis models with consideration of their evolution and application processes. Trans GIS, 22: 1498–1521

    Article  Google Scholar 

  17. Chen M, Lu G N, Lu F Q, Wan G. 2018b. Grid systems for geographic modelling and simulation: A review. Sci Found China, 26: 1–22

    Google Scholar 

  18. Chen M, Yue S S, Lü G N, Lin H, Yang C W, Wen Y N, Hou T, Xiao D W, Jiang H. 2019. Teamwork-oriented integrated modeling method for geo-problem solving. Environ Model Softw, 119: 111–123

    Article  Google Scholar 

  19. Chen M, Voinov A, Ames D P, Kettner A J, Goodall J L, Jakeman A J, Barton M C, Harpham Q, Cuddy S M, DeLuca C, Yue S S, Wang J, Zhang F Y, Wen Y N, Lü G N. 2020. Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications. Earth-Sci Rev, 207: 103223

    Article  Google Scholar 

  20. Chen X T. 2015. Complexity study on tourism regional system (in Chinese). Dissertation for Doctoral Degree. Changchun: Northeast Normal University

    Google Scholar 

  21. Cheng C X, Shi P J, Song C Q, Gao J B. 2018. Geographic big-data: A new opportunity for geography complexity study (in Chinese). Acta Geogr Sin, 73: 1397–1406

    Google Scholar 

  22. Cheng G D, Xiao H L, Fu B J, Xiao D N, Zheng C M, Kang S Z, Yan X D, Wang Y, An L Z, Li X B, Chen Y Y, Leng S Y, Wang Y H, Yang D W, Li X Y, Zhang G L, Zheng Y R, Liu Q H, Zhou S B. 2014. Advances in synthetic research on the eco-hydrological process of the heihe river basin (in Chinese). Adv Earth Sci, 29: 431–437

    Google Scholar 

  23. Cheng G D, Li X. 2015. Integrated research methods in watershed science. Sci China Earth Sci, 58: 1159–1168

    Article  Google Scholar 

  24. Cheng S W. 1999. Complexity science and management (in Chinese). Bull Chin Acad Sci, 3: 3–5

    Google Scholar 

  25. Chorley R J, Haggett P. 2013. Integrated Models in Geography. London: Routledge

    Google Scholar 

  26. Clarke T. 2002. Wanted: Scientists for sustainability. Nature, 418: 812–814

    Article  Google Scholar 

  27. Costanza R, Voinov A. 2004. Landscape Simulation Modelling: A Spatially Explicit, Dynamic Approach. Berlin: Springer-Verlag

    Book  Google Scholar 

  28. Cutts B B, White D D, Kinzig A P. 2011. Participatory geographic information systems for the co-production of science and policy in an emerging boundary organization. Environ Sci Policy, 14: 977–985

    Article  Google Scholar 

  29. Dai Q, Han D. 2014. Exploration of discrepancy between radar and gauge rainfall estimates driven by wind fields. Water Resour Res, 50: 8571–8588

    Article  Google Scholar 

  30. David O, Ascough II J C, Lloyd W, Green T R, Rojas K W, Leavesley G H, Ahuja L R. 2013. A software engineering perspective on environmental modeling framework design: The Object Modeling System. Environ Model Softw, 39: 201–213

    Article  Google Scholar 

  31. Dong J W, Kuang W H, Liu J Y. 2017. Continuous land cover change monitoring in the remote sensing big data era. Sci China Earth Sci, 60: 2223–2224

    Article  Google Scholar 

  32. Dubois G, Schulz M, Skøien J, Bastin L, Peedell S. 2013. eHabitat, a multipurpose web processing service for ecological modeling. Environ Model Softw, 41: 123–133

    Article  Google Scholar 

  33. Elsawah S, Pierce S A, Hamilton S H, van Delden H, Haase D, Elmahdi A, Jakeman A J. 2017. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ Model Softw, 93: 127–145

    Article  Google Scholar 

  34. Elsawah S, Filatova T, Jakeman A J, Kettner A J, Zellner M L, Athanasiadis I N, Hamilton S H, Axtell R L, Brown D G, Gilligan J M, Janssen M A, Robinson D T, Rozenberg J, Ullah I I T, Lade S J. 2020. Eight grand challenges in socio-environmental systems modeling. Socio-Environ Syst Model, 2: 16226

    Article  Google Scholar 

  35. Fabre J, Louchart X, Colin F, Dagès C, Moussa R, Rabotin M, Raclot D, Lagacherie P, Voltz M. 2010. OpenFluid: A software environment for modelling fluxes in landscapes. LandMod2010, Montpellier, France

  36. Fan J. 2004. Comprehensiveness of geography and integrated research on regional development (in Chinese). Acta Geogr Sin, S1: 33–40

    Google Scholar 

  37. Fan J. 2018. “Territorial System of Human-environment Interaction”: A theoretical cornerstone for comprehensive research on formation and evolution of the geographical pattern (in Chinese). Acta Geogr Sin, 73: 597–607

    Google Scholar 

  38. Fan L, Liu Q, Wang C, Guo F. 2017. Indian Ocean dipole modes associated with different types of ENSO development. J Clim, 30: 2233–2249

    Article  Google Scholar 

  39. Feng K T, Nan X T, Zhao Y B, Shu L L. 2008. Prototype development for an integrated modeling environment based on plugins (in Chinese). Remote Sens Tech Appl, 23: 587–591

    Google Scholar 

  40. Formetta G, Antonello A, Franceschi S, David O, Rigon R. 2014. Hydrological modelling with components: A GIS-based open-source framework. Environ Model Softw, 55: 190–200

    Article  Google Scholar 

  41. Fu B J, Liu G H, Chen L X, Ma K M, Li J R. 2001. Scheme of ecological regionalization in China (in Chinese). Acta Ecol Sin, 1: 1–6

    Google Scholar 

  42. Fu B J. 2014. The integrated studies of geography: Coupling of patterns and processes (in Chinese). Acta Geogr Sin, 69: 1052–1059

    Google Scholar 

  43. Fu B J. 2017. Geography: From knowledge, science to decision making support (in Chinese). Acta Geogr Sin, 72: 1923–1932

    Google Scholar 

  44. Fu B J. 2018. Thoughts on the recent development of physical geography (in Chinese). Prog Geog, 37: 1–7

    Article  Google Scholar 

  45. Gan G H, Yang G A. 2004. The complexity study in geographical system and geography (in Chinese). Chin J Syst Sci, 3: 78–83

    Google Scholar 

  46. Gan T, Tarboton D G, Dash P, Gichamo T Z, Horsburgh J S. 2020. Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute hydrologic models. Environ Model Softw, 130: 104731

    Article  Google Scholar 

  47. Gironás J, Roesner L A, Rossman L A, Davis J. 2010. A new applications manual for the Storm Water Management Model (SWMM). Environ Model Softw, 25: 813–814

    Article  Google Scholar 

  48. Goodchild M F. 2004. The validity and usefulness of laws in geographic information science and geography. Ann Assoc Am Geogr, 94: 300–303

    Article  Google Scholar 

  49. Granell C, Díaz L, Gould M. 2010. Service-oriented applications for environmental models: Reusable geospatial services. Environ Model Softw, 25: 182–198

    Article  Google Scholar 

  50. Granell C, Schade S, Ostländer N. 2013. Seeing the forest through the trees: A review of integrated environmental modelling tools. Comput Environ Urban Syst, 41: 136–150

    Article  Google Scholar 

  51. Green T R, Taniguchi M, Kooi H, Gurdak J J, Allen D M, Hiscock K M, Treidel H, Aureli A. 2011. Beneath the surface of global change: Impacts of climate change on groundwater. J Hydrol, 405: 532–560

    Article  Google Scholar 

  52. Guo L, Zhang H T, Chen J Y, Li R J, Qin C. 2012. Comparison between co-kriging model and geographically weighted regression model in spatial prediction of soil attributes (in Chinese). Acta Pedol Sin, 49: 1037–1042

    Google Scholar 

  53. Guo Y L, Li X, Zhao Z F, Wei H Y. 2018. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China. Sci China Earth Sci, 61: 1669–1684

    Article  Google Scholar 

  54. Harpham Q, Danovaro E. 2015. Towards standard metadata to support models and interfaces in a hydro-meteorological model chain. J Hydroinf, 17: 260–274

    Article  Google Scholar 

  55. Hamilton S H, Fu B, Guillaume J H, Badham J, Elsawah S, Gober P, Hunt R J, Iwanaga T, Jakeman A J, Ames D P, Curtis A, Hill M C, Pierce S A, Zare F. 2019. A framework for characterising and evaluating the effectiveness of environmental modelling. Environ Model Softw, 118: 83–98

    Article  Google Scholar 

  56. He S S, Zhou Z R, Fan C, Dong S H, Bai M L. 2020. Concurrency control strategy for feature editing in collaborative disaster reduction system (in Chinese). Geomat Spat Inform Technol, 43: 35–38

    Google Scholar 

  57. Hill C, DeLuca C, Balaji C, Suarez M, Silva A D. 2004. The architecture of the earth system modeling framework. Comput Sci Eng, 6: 18–28

    Article  Google Scholar 

  58. Hu D. 2012. Research on service encapsulation method of geographical model (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing Normal University

    Google Scholar 

  59. Huang Q, Cheng S, Perozzi R E, Perozzi E F. 2012. Use of a MM5-CAMx-PSAT modeling system to study SO2 source apportionment in the Beijing Metropolitan Region. Environ Model Assess, 17: 527–538

    Article  Google Scholar 

  60. Iwanaga T, Wang H H, Hamilton S H, Grimm V, Koralewski T E, Salado A, Elsawah S, Razavi S, Yang J, Glynn P, Badham J, Voinov A, Chen M, Grant W E, Peterson T R, Frank K, Shenk G, Barton C M, Jakeman A J, Little J C. 2021. Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environ Model Softw, 135: 104885

    Article  Google Scholar 

  61. Jakeman A J, Letcher R A, Norton J P. 2006. Ten iterative steps in development and evaluation of environmental models. Environ Model Softw, 21: 602–614

    Article  Google Scholar 

  62. Janssen S, Athanasiadis I N, Bezlepkina I, Knapen R, Li H, Domínguez I P, Rizzoli A E, van Ittersum M K. 2011. Linking models for assessing agricultural land use change. Comput Electron Agr, 76: 148–160

    Article  Google Scholar 

  63. Jing C. 2014. Research of energy-efficient scheduling and resource management on cloud data centers (in Chinese). Dissertation for Doctoral Degree. Shanghai: Shanghai Jiao Tong University

    Google Scholar 

  64. Kawamura R. 1994. A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J Phys Oceanogr, 24: 707–715

    Article  Google Scholar 

  65. Kelly M, Ferranto S, Lei S, Ueda K I, Huntsinger L. 2012. Expanding the table: The web as a tool for participatory adaptive management in California forests. J Environ Manage, 109: 1–11

    Article  Google Scholar 

  66. Koo H, Chen M, Jakeman A, Zhang F Y. 2020a. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environ Model Softw, 127: 104676

    Article  Google Scholar 

  67. Koo H, Iwanaga T, Croke B F W, Jakeman A J, Yang J, Wang H H, Sun X F, Lü G N, Li X, Yue T X, Yuan W P, Liu X T, Chen M. 2020b. Position paper: Sensitivity analysis of spatially distributed environmental models—A pragmatic framework for the exploration of uncertainty sources. Environ Model Softw, 134: 104857

    Article  Google Scholar 

  68. Laflen J M, Lane L J, Foster G R. 1991. WEPP: A new generation of erosion prediction technology. J Soil Water Conserv, 46: 34–38

    Google Scholar 

  69. Langran G, Chrisman N R. 1988. A framework for temporal geographic information. Cartographica, 25: 1–14

    Article  Google Scholar 

  70. Laniak G F, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A. 2013. Integrated environmental modeling: A vision and roadmap for the future. Environ Model Softw, 39: 3–23

    Article  Google Scholar 

  71. Leavesley G H, Markstrom S L, Brewer M S, Viger R J. 1996. The modular modeling system (MMS)—The physical process modeling component of a database-centered decision support system for water and power management. Water Air Soil Pollut, 90: 303–311

    Article  Google Scholar 

  72. Li C F. 1982. Recent development of geography as against its traditions (in Chinese). Acta Geogr Sin, 1: 1–7

    Google Scholar 

  73. Li P F. 2016. The research on method of geospatial model sharing and interoperation (in Chinese). Dissertation for Doctoral Degree. Wuhan: Wuhan University

    Google Scholar 

  74. Li Q Q, Li D E. 2014. Big data GIS (in Chinese). Geomat Inform Sci Wuhan Univ, 39: 641–644, 666

    Google Scholar 

  75. Li S C, Wang Y, Cai Y L. 2010. The paradigm transformation of geography from the perspective of complexity sciences (in Chinese). Acta Geogr Sin, 65: 1315–1324

    Google Scholar 

  76. Li X, Chen Y M, Liu X P, Li D, He J Q. 2011. Concepts, methodologies, and tools of an integrated Geographical Simulation and Optimization System. Int J Geogr Inf Sci, 25: 633–655

    Article  Google Scholar 

  77. Li X, Chen G, Liu X, Liang X, Wang S, Chen Y, Pei F, Xu X. 2017. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions. Ann Am Assoc Geogr, 107: 1040–1059

    Google Scholar 

  78. Li X, Cheng G D, Lin H, Cai X M, Fang M, Ge Y C, Hu X L, Chen M, Li W Y. 2018. Watershed System Model: The essentials to model complex human-nature system at the river basin scale. J Geophys Res Atmos, 123: 3019–3034

    Article  Google Scholar 

  79. Li X, Liu F, Fang M. 2020. Harmonizing models and observations: Data assimilation in Earth system science. Sci China Earth Sci, 63: 1059–1068

    Article  Google Scholar 

  80. Li X S, Han Z Y, Lu H Y, Chen Y Y, Li Y, Yuan X K, Zhou Y W, Jiang M Y, Lü C J. 2018. Onset of Xiashu loess deposition in southern China by 0.9 Ma and its implications for regional aridification. Sci China Earth Sci, 61: 256–269

    Article  Google Scholar 

  81. Li X S, Long X X, Qi X X. 2019. Dynamic evolution and analysis of coupling development of economy, society and environment in Yangtze River economic belt (in Chinese). Resour Environ Yangtze Basin, 28: 505–516

    Google Scholar 

  82. Lin H, Zhang J, Yang P, Liu J. 2006. Development on spatially integrated humanities and social science (in Chinese). Geo-Inf Sci, 2: 30–37

    Google Scholar 

  83. Lin H, Chen M, Lü G N, Zhu Q, Gong J H, You X, Wen Y N, Xu B L, Hu M Y. 2013a. Virtual geographic environments (VGEs): A new generation of geographic analysis tool. Earth-Sci Rev, 126: 74–84

    Article  Google Scholar 

  84. Lin H, Chen M, Lü G N. 2013b. Virtual geographic environment: A workspace for computer-aided geographic experiments. Ann Assoc Am Geogr, 103: 465–482

    Article  Google Scholar 

  85. Lin H, Chen M. 2015. Managing and sharing geographic knowledge in virtual geographic environments (VGEs). Ann GIS, 21: 261–263

    Article  Google Scholar 

  86. Liu B Y, Zhang W B. 2003. Development of Chinese soil loss equation information system based on GIS (in Chinese). J Soil Water Conserv, 2: 89–92

    Google Scholar 

  87. Liu B, Bai S Y, Yu P H, Chen M, Pan J W, Chen Y Y. 2019. Land use analysis of plateau lake watershed based on GF and multi-source data (in Chinese). Bull Surv Mapp, 12: 77–82

    Google Scholar 

  88. Liu D. 2014. The summarize of atmospheric of dispersion model ADMS (in Chinese). Environ Dev, 26: 17–18

    Google Scholar 

  89. Liu H M. 2014. Analysis of oasis urbanization mechanism based on the complex system theory: A case study of Wuwei oasis (in Chinese). Dissertation for Doctoral Degree. Lanzhou: Northwest Normal University

    Google Scholar 

  90. Liu X P, Liang X, Li X, Xu X C, Ou J P, Chen Y M, Li S Y, Wang S J, Pei F S. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape Urban Plann, 168: 94–116

    Article  Google Scholar 

  91. Liu X Q, Pei T, Zhou C H, Du Y Y, Ma T, Xie C J, Xu J. 2018. A systems dynamic model of a coal-based city with multiple adaptive scenarios: A case study of Ordos, China. Sci China Earth Sci, 61: 302–316

    Article  Google Scholar 

  92. Liu Y H, Zheng D, Ge Q S, Wu S H, Zhang X Q, Dai E F, Zhang Y L, Yang Q Y. 2005. Problems on the research of comprehensive regionalization in China (in Chinese). Geogr Res, 3: 321–329

    Google Scholar 

  93. Lu D D. 2011. Development of geographical sciences and research on global change in China (in Chinese). Acta Geogr Sin, 66: 147–156

    Google Scholar 

  94. Lu F, Zhang H C. 2014. Big data and generalized GIS (in Chinese). Geomat Inform Sci Wuhan Univ, 39: 645–654

    Google Scholar 

  95. Lü G N. 2011. Geographic analysis-oriented Virtual Geographic Environment: Framework, structure and functions. Sci China Earth Sci, 54: 733–743

    Article  Google Scholar 

  96. Lü G N, Chen M, Yuan L W, Zhou L C, Wen Y N, Wu M G, Hu B, Yu Z Y, Yue S S, Sheng Y H. 2018. Geographic Scenario: A possible foundation for further development of Virtual Geographic Environments (VGEs). Int J Geogr Inf Sci, 11: 356–368

    Google Scholar 

  97. Lü G, Batty M, Strobl J, Lin H, Zhu A X, Chen M. 2019. Reflections and speculations on the progress in Geographic Information Systems (GIS): A geographic perspective. Int J Geogr Inf Sci, 33: 346–367

    Article  Google Scholar 

  98. Lü G N, Zhou C H, Lin H, Chen M, Yue S S, Wen Y N. 2021. Development overview and some thoughts on geographic synthesis (in Chinese). Chin Sci Bull, 66: 1–13

    Google Scholar 

  99. Ma Z Y, Chen M, Zhang B C, Wang M, Shen C R, Yue S S, Wen Y N, Lü G N. 2019. A web-based integrated modeling and simulation method for forest growth research. Earth Space Sci, 6: 2142–2159

    Article  Google Scholar 

  100. Ma Z Y, Chen M, Yue S S, Zhang B C, Zhu Z Y, Wen Y N, Lü G N, Lu M Y. 2021. Activity-based process construction for participatory geo-analysis. GISci Remote Sens, 58: 180–198

    Article  Google Scholar 

  101. Maidment D R. 2008. Bringing water data together. J Water Resour Plann Manage, 134: 95–96

    Article  Google Scholar 

  102. Moore R V, Tindall C I. 2005. An overview of the open modelling interface and environment (the OpenMI). Environ Sci Policy, 8: 279–286

    Article  Google Scholar 

  103. Morgan R, Quinton J, Smith R, Govers G, Poesen J, Auerswald K, Chisci G, Torri D, Styczen M. 1998. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms, 23: 527–544

    Article  Google Scholar 

  104. Müller B, Bohn F, Dreßler G, Groeneveld J, Klassert C, Martin R, Schlüter M, Schulze J, Weise H, Schwarz N. 2013. Describing human decisions in agent-based models—ODD+D, an extension of the ODD protocol. Environ Model Softw, 48: 37–48

    Article  Google Scholar 

  105. Munafò M R, Nosek B A, Bishop D V M, Button K S, Chambers C D, Percie du Sert N, Simonsohn U, Wagenmakers E J, Ware J J, Ioannidis J P A. 2017. A manifesto for reproducible science. Nat Hum Behav, 1: 0021

    Article  Google Scholar 

  106. Nan Z T, Shu L L, Zhao Y B, Li X, Ding Y J. 2011. Integrated modeling environment and a preliminary application on the Heihe River Basin, China. Sci China Technol Sci, 54: 2145–2156

    Article  Google Scholar 

  107. Neitsch S L, Arnold J G, Kiniry J R, Williams J R. 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas: Texas Water Resources Institute

    Google Scholar 

  108. Ni S X. 2003. New progress on the integrated studies in geography (in Chinese). Prog Geog, 4: 335–341

    Google Scholar 

  109. Niknejad N, Ismail W, Ghani I, Nazari B, Bahari M, Hussin A. 2020. Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Inf Syst, 91: 101491

    Article  Google Scholar 

  110. Nixdorf E, Chen M, Lin H, Lei X H, Kolditz O. 2020. Monitoring and modeling of water ecologic security in large river-lake systems. J Hydrol, 591: 125576

    Article  Google Scholar 

  111. Nosek B, Alter G, Banks G, Borsboom D, Bowman S, Breckler S, Buck S, Chambers C, Chin G, Christensen G, Contestabile M, Dafoe A, Eich E, Freese J, Glennerster R, Goroff D, Green D, Hesse B, Humphreys M, Ishiyama J, Karlan D, Kraut A, Lupia A, Mabry P, Madon T A, Malhotra N, Mayo-Wilson E, McNutt M, Miguel E, Paluck E L, Simonsohn U, Soderberg C, Spellman B A, Turitto J, VandenBos G, Vazire S, Wagenmakers E J, Wilson R, Yarkoni T. 2015. Promoting an open research culture. Science, 348: 1422–1425

    Article  Google Scholar 

  112. O’Sullivan D. 2004. Complexity science and human geography. Trans Inst Br Geog, 29: 282–295

    Article  Google Scholar 

  113. Oxley T, Mcintosh B S, Winder N, Mulligan M, Engelen G. 2004. Integrated modelling and decision-support tools: A Mediterranean example. Environ Model Softw, 19: 999–1010

    Article  Google Scholar 

  114. Paasi A. 2009. Regional geography I. Intl Encycl Human Geogr, 9: 214–227

    Article  Google Scholar 

  115. Peckham S D, Hutton E W, Norris B. 2013. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Comput Geosci, 53: 3–12

    Article  Google Scholar 

  116. Peuquet D J. 1994. It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr, 84: 441–461

    Article  Google Scholar 

  117. Portugali J. 2006. Complexity theory as a link between space and place. Environ Plan A, 38: 647–664

    Article  Google Scholar 

  118. Qian X S, Yu J Y, Dai R W. 1990. A new discipline of science-The study of open complex giant system and its methodology (in Chinese). Nat Mag, 13: 3–10

    Google Scholar 

  119. Rajib M A, Merwade V, Kim I L, Zhao L, Song C, Zhe S. 2016. SWAT-Share—A web platform for collaborative research and education through online sharing, simulation and visualization of SWAT models. Environ Model Softw, 75: 498–512

    Article  Google Scholar 

  120. Ramteke G, Singh R, Chatterjee C. 2020. Assessing impacts of conservation measures on watershed hydrology using MIKE SHE model in the face of climate change. Water Resour Manage, 34: 4233–4252

    Article  Google Scholar 

  121. Razavi S, Jakeman A, Saltelli A, Prieur C, Iooss B, Borgonovo E, Plischke E, Piano S L, Iwanaga T, Becker W, Tarantola S, Guillaume J H A, Jakeman J, Gupta H, Melillo N, Rabitti G, Chabridon V, Duan Q, Sun X, Smith S, Sheikholeslami R, Hosseini N, Asadzadeh M, Puy A, Kucherenko S, Maier H R. 2021. The future of sensitivity analysis: An essential discipline for systems modeling and policy support. Environ Model Softw, 137: 104954

    Article  Google Scholar 

  122. Renolen A. 2000. Modelling the real world: Conceptual modelling in spatiotemporal information system design. Trans GIS, 4: 23–42

    Article  Google Scholar 

  123. Seneviratne S I, Corti T, Davin E L, Hirschi M, Jaeger E B, Lehner I, Orlowsky B, Teuling A J. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci Rev, 99: 125–161

    Article  Google Scholar 

  124. Shi P J, Song C Q, Cheng C X. 2019. Geographical synergetics: From understanding human-environment relationship to designing humanenvironment synergy (in Chinese). Acta Geogr Sin, 74: 3–15

    Google Scholar 

  125. Simão A, Densham P J, Haklay M. 2009. Web-based GIS for collaborative planning and public participation: An application to the strategic planning of wind farm sites. J Environ Manage, 90: 2027–2040

    Article  Google Scholar 

  126. Singh R, Tiwari K N, Mal B C. 2006. Hydrological studies for small watershed in India using the ANSWERS model. J Hydrol, 318: 184–199

    Article  Google Scholar 

  127. Song C Q, Leng S Y. 2005. Some important scientific problems of integrative study of Chinese geography in 5 to 10 years (in Chinese). Acta Geogr Sin, 60: 546–552

    Google Scholar 

  128. Song C Q. 2016. On paradigms of geographical research (in Chinese). Adv Earth Sci, 35: 1–3

    Google Scholar 

  129. Song C Q, Cheng C X, Shi P J. 2018. Geography complexity: New connotations of geography in the new era (in Chinese). Acta Geogr Sin, 73: 1204–1213

    Google Scholar 

  130. Song C Q, Cheng C X, Yang X F, Ye S J, Gao P C. 2020a. Understanding geographic coupling and achieving geographic integration (in Chinese). Acta Geogr Sin, 75: 3–13

    Google Scholar 

  131. Song C Q, Zhang G Y, Cheng C X, Chen F H. 2020b. Nature and basic issues of geography (in Chinese). Sci Geogr Sin, 40: 6–11

    Google Scholar 

  132. Stark P B. 2018. Before reproducibility must come preproducibility. Nature, 557: 613

    Article  Google Scholar 

  133. Su H, Yin Y, Zhu B, Wang Z F, Li J, Pan X L. 2012. Numerical simulation and sensitive factors analyse for dry deposition of SO2 and NO2 in Bohai Rim area of China. China Environ Sci, 32: 1921–1932

    Google Scholar 

  134. Sun Y, Li S. 2016. Real-time collaborative GIS: A technological review. ISPRS J Photogr Remote Sens, 115: 143–152

    Article  Google Scholar 

  135. Tan Y F. 2018. Study on service-oriented encapsulation method and deployment strategy of geo-analysis model on Linux (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing Normal University

    Google Scholar 

  136. Tanenbaum A S, Steen M V. 2007. Distributed systems: Principles and paradigms. Upper Saddle River: Prentice-Hall

    Google Scholar 

  137. Tang Q H, Liu X C, Li Z, Yun X B, Zhang X J, Yu Q, Li J, Zhang Y Y, Cui H J, Sun S A, Zhang C, Tang Y, Leng G Y. 2019. Integrated water systems model for terrestrial water cycle simulation (in Chinese). Adv Earth Sci, 34: 115–123

    Google Scholar 

  138. Tian H Q, Liu M L, Zhang C, Ren W, Xu X F, Chen G S, Lü C Q, Tao B. 2010. The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change (in Chinese). Acta Geogr Sin, 65: 1027–1047

    Google Scholar 

  139. Tobler W. 2004. On the first law of geography: A reply. Ann Assoc Am Geog, 94: 304–310

    Article  Google Scholar 

  140. Trinh T, Ishida K, Kavvas M L, Ercan A, Carr K. 2017. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model. Sci Total Environ, 586: 197–205

    Article  Google Scholar 

  141. van Ittersum M K, Ewert F, Heckelei T, Wery J, Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli A, van der Wal T, Wien J, Wolf J. 2008. Integrated assessment of agricultural systems—A component-based framework for the European Union (SEAMLESS). Agric Syst, 96: 150–165

    Article  Google Scholar 

  142. Verweij P J F M, Knapen M J R, de Winter W P, Wien J J F, te Roller J A, Sieber S, Jansen J M L. 2010. An IT perspective on integrated environmental modelling: The SIAT case. Ecol Model, 221: 2167–2176

    Article  Google Scholar 

  143. Voinov A, Kolagani N, McCall M K, Glynn P D, Kragt M E, Ostermann F O, Pierce S A, Ramu P. 2016. Modelling with stakeholders—Next generation. Environ Model Softw, 77: 196–220

    Article  Google Scholar 

  144. Voinov A, Jenni K, Gray S, Kolagani N, Glynn P D, Bommel P, Prell C, Zellner M, Paolisso M, Jordan R, Sterling E, Olabisi L S, Giabbanelli P J, Sun Z, Page C L, Elsawah S, BenDor T K, Hubacek K, Laursen B K, Jetter A, Basco-Carrera L, Singer A, Young L, Brunacini J, Smajgl A. 2018. Tools and methods in participatory modeling: Selecting the right tool for the job. Environ Model Softw, 109: 232–255

    Article  Google Scholar 

  145. Wan Q, Wan H T, Ding G X. 2003. The visual geo-model construction environment based on concept map (in Chinese). J Remote Sens, 7: 412–419, 435

    Google Scholar 

  146. Wang J, Chen M, Lü G N, Yue S S, Chen K, Wen Y N. 2018. A study on data processing services for the operation of geo-analysis models in the open web environment. Earth Space Sci, 5: 844–862

    Article  Google Scholar 

  147. Wang J, Chen M, Lü G, Yue S, Wen Y, Lan Z, Zhang S. 2020. A data sharing method in the open web environment: Data sharing in hydrology. J Hydrol, 587: 124973

    Article  Google Scholar 

  148. Wang J F, Ge Y, Li L F, Meng B, Wu J L, Bo Y C, Du S H, Liao Y L, Hu M G, Xu C D. 2014. Spatiotemporal data analysis in geography (in Chinese). Acta Geogr Sin, 69: 1326–1345

    Google Scholar 

  149. Wang L, Jang C, Zhang Y, Wang K, Zhang Q, Streets D, Fu J, Lei Y, Schreifels J, He K, Hao J, Lam Y F, Lin J, Meskhidze N, Voorhees S, Evarts D, Phillips S. 2010. Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment. Atmos Environ, 44: 3449–3457

    Article  Google Scholar 

  150. Wang Z, Gu G X, Wu J, Liu C X. 2015. CIECIA: A new climate change integrated assessment model and its assessments of global carbon abatement schemes. Sci China Earth Sci, 59: 185–206

    Article  Google Scholar 

  151. Waugh D. 2000. Geography: An Integrated Approach. New York: Nelson Thornes

    Google Scholar 

  152. Wen Y N, Lü G N, Yang H, Cao D, Chen M. 2006. A service-oriented framework of distributed geographic model integration (in Chinese). J Remote Sens, 2: 160–168

    Google Scholar 

  153. Wen Y, Chen M, Lu G, Lin H, He L, Yue S. 2013. Prototyping an open environment for sharing geographical analysis models on cloud computing platform. Int J Digital Earth, 6: 356–382

    Article  Google Scholar 

  154. Wen Y, Chen M, Yue S S, Zheng P B, Peng G Q, Lu G N. 2017. A modelservice deployment strategy for collaboratively sharing geo-analysis models in an open web environment. Int J Digital Earth, 10: 405–425

    Article  Google Scholar 

  155. Whelan G, Kim K, Pelton M A, Castleton K J, Laniak G F, Wolfe K, Parmar R, Babendreier J, Galvin M. 2014. Design of a component-based integrated environmental modeling framework. Environ Model Softw, 55: 1–24

    Article  Google Scholar 

  156. Woelfle M, Olliaro P, Todd M H. 2011. Open science is a research accelerator. Nat Chem, 3: 745–748

    Article  Google Scholar 

  157. Wu S H, Zhao D S, Yin Y H, Yang Q Y, Zhang X Q. 2016. Continuation and innovation of integrated studies in physical geography (in Chinese). Acta Geogr Sin, 71: 1484–1493

    Google Scholar 

  158. Xia F, Zhang Y Z, Wu W. 2009. Progress in applications of the EOF analysis in the research of coastal geomorphology and sedimentology (in Chinese). Adv Earth Sci, 28: 174–186

    Google Scholar 

  159. Xu D J. 2013. Design and implementation of one map for land resources system based on complex system (in Chinese). Dissertation for Doctoral Degree. Wuhan: Wuhan University

    Google Scholar 

  160. Xu Z X. 2010. Hydrological models: Past, present and future (in Chinese). J Beijing Norm Univ-Nat Sci, 46: 278–289

    Google Scholar 

  161. Xu X G, Li S C, Cai Y L. 2009. Recent progress and prospect of integrated physical geography in China (in Chinese). Acta Geogr Sin, 64: 1027–1038

    Google Scholar 

  162. Yang Q Y, Zheng D, Wu S H, Ge Q S. 2005. Review and prospects: Integrated physical geography in China since the 1950s (in Chinese). Geogr Res, 24: 899–910

    Google Scholar 

  163. You W D. 2017. Research on data deploying and exchanging method for integrating geographic models in distributed web environment (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing Normal University

    Google Scholar 

  164. Yue S S, Wen Y N, Chen M, Lu G N, Hu D, Zhang F. 2015. A data description model for reusing, sharing and integrating geo-analysis models. Environ Earth Sci, 74: 7081–7099

    Article  Google Scholar 

  165. Yue S S, Chen M, Wen Y N, Lu G N. 2016. Service-oriented model-encapsulation strategy for sharing and integrating heterogeneous geo-analysis models in an open web environment. ISPRS J Photogr Remote Sens, 114: 258–273

    Article  Google Scholar 

  166. Yue S S, Chen M, Yang C W, Shen C R, Zhang B W, Wen Y N, Lü G N. 2018. A loosely integrated data configuration strategy for web-based participatory modeling. GISci Remote Sens, 56: 670–698

    Article  Google Scholar 

  167. Yue S S, Chen M, Song J, Yuan W P, Chen T X, Lü G N, Shen C R, Ma Z Y, Xu K, Wen Y N, Song H Q. 2020. Participatory intercomparison strategy for terrestrial carbon cycle models based on a service-oriented architecture. Future Gen Comput Syst, 112: 449–466

    Article  Google Scholar 

  168. Yue T X. 2011. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press

    Book  Google Scholar 

  169. Yue T X, Liu Y, Zhao M W, Du Z P, Zhao N. 2016. A fundamental theorem of Earth’s surface modelling. Environ Earth Sci, 75: 751

    Article  Google Scholar 

  170. Yue T X, Zhao N, Liu Y, Wang Y F, Zhang B, Du Z P, Fan Z M, Shi W J, Chen C F, Zhao M W, Song D J, Wang S, Song Y J, Yan C Q, Li Q Q, Sun X F, Zhang L L, Tian Y Z, Wang W, Wang Y A, Ma S N, Huang H S, Lu Y M, Wang Q, Wang C L, Wang Y Z, Lu M, Zhou W, Liu Y, Yin X Z, Wang Z, Bao Z Y, Zhao M M, Zhao Y P, Jiao Y M, Naseer U, Fan B, Li S B, Yang Y, Wilson J P. 2020. A fundamental theorem for eco-environmental surface modelling and its applications. Sci China Earth Sci, 63: 1092–1112

    Article  Google Scholar 

  171. Zare F, Guillaume J H, Jakeman A J, Torabi O. 2020. Reflective communication to improve problem-solving pathways: Key issues illustrated for an integrated environmental modelling case study. Environ Model Softw, 126: 104645

    Article  Google Scholar 

  172. Zhang C, Chen M, Li R, Fang C, Lin H. 2016. What’s going on about geoprocess modeling in virtual geographic environments (VGEs). Ecol Model, 319: 147–154

    Article  Google Scholar 

  173. Zhang C X, Lin H, Chen M, Li R R, Zeng Z C. 2014a. Scale compatibility analysis in geographic process research: A case study of a meteorological simulation in Hong Kong. Appl Geogr, 52: 135–143

    Article  Google Scholar 

  174. Zhang C X, Lin H, Chen M, Yang L. 2014b. Scale matching of multiscale digital elevation model (DEM) data and the Weather Research and Forecasting (WRF) model: A case study of meteorological simulation in Hong Kong. Arab J Geosci, 7: 2215–2223

    Article  Google Scholar 

  175. Zhang C X, Chen M, Li R R, Ding Y L, Lin H. 2015. A virtual geographic environment system for multiscale air quality analysis and decision making: A case study of SO2 concentration simulation. Appl Geogr, 63: 326–336

    Article  Google Scholar 

  176. Zhang F Y, Chen M, Ames D P, Shen C, Yue S, Wen Y, Lü G. 2019. Design and development of a service-oriented wrapper system for sharing and reusing distributed geoanalysis models on the web. Environ Model Softw, 111: 498–509

    Article  Google Scholar 

  177. Zhang F Y, Chen M, Yue S S, Wen Y N, Lü G N, Li F. 2020. Service-oriented interface design for open distributed environmental simulations. Environ Res, 191: 110225

    Article  Google Scholar 

  178. Zhang M D, Yue P, Gao F. 2018. A geographic model integration approach and implementation based on coupling components and services (in Chinese). Geomat Inform Sci Wuhan Univ, 43: 1106–1112

    Google Scholar 

  179. Zhang W L, Zhang J Y, Fan G Z. 2014. Dominant modes of dry- and wet-season precipitation in Southwestern China (in Chinese). Chin J Atmos Sci, 38: 590–602

    Google Scholar 

  180. Zhang Z Y. 2019. Subsurface modes of tropical pacific and relations with two types of EI Nino (in Chinese). Dissertation for Doctoral Degree. Hefei: University of Science and Technology of China

    Google Scholar 

  181. Zheng D. 1998. A study on the regionality and regional differentiation of geography (in Chinese). Geogr Res, 1:3–5

    Google Scholar 

  182. Zheng D, Fu X F. 1999. A preliminary study on issues of integrated geographical regionalization (in Chinese). Sci Geogr Sin, 3:3–5

    Google Scholar 

  183. Zheng D, Ge Q S, Zhang X Q, He F N, Wu S H, Yang Q Y. 2005. Regionalization in China: Retrospect and prospect (in Chinese). Geogr Res, 3: 330–344

    Google Scholar 

  184. Zhu A X, Lu G N, Liu J, Qin C Z, Zhou C. 2018. Spatial prediction based on third law of geography. Ann GIS, 24: 225–240

    Article  Google Scholar 

  185. Zonneveld J I S. 1983. Some basic notions in geographical synthesis. GeoJournal, 7: 121–129

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the detailed suggestions and comments from the responsible editor and anonymous reviewers. We express heartfelt thanks to members of the OpenGMS team. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41930648, 41622108 & U1811464).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guonian Lv.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Lv, G., Zhou, C. et al. Geographic modeling and simulation systems for geographic research in the new era: Some thoughts on their development and construction. Sci. China Earth Sci. 64, 1207–1223 (2021). https://doi.org/10.1007/s11430-020-9759-0

Download citation

Keywords

  • Geographic characteristics
  • Development of geography
  • Regionality
  • Comprehensiveness
  • Complexity
  • Geographic modeling and simulation