Skip to main content

Advertisement

Log in

A fundamental theorem of Earth’s surface modelling

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparse to satisfy some application requirements. Satellite remote sensing and system models can frequently supply spatially continuous information about the Earth’s surface, which is impossible from ground-based investigations, but remote sensing description and system model simulation are not able to directly obtain process parameters. The most effective method for Earth surface modelling entails the integration of satellite observations or system models with ground observations. However, the full integration was ignored in most of the methods. For finding a solution for this problem, we suggest an alternative method, high accuracy surface modeling (HASM), which takes global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints. HASM completes its operation when its output satisfies the iteration stopping criterion which is determined by application requirement for accuracy. A Fundamental Theorem of Earth Surface Modelling (FTESM) is abstracted on the basis of applying HASM to simulating surfaces of elevation, soil properties, changes of ecosystem services, and driving forces of the changes on multi-scales for about 20 years. FTESM is described as “an Earth’s surface system or a component surface of the Earth’s surface environment can be simulated with HASM when its spatial resolution is fine enough, which is uniquely defined by both extrinsic and intrinsic invariants of the surface”. From FTESM, seven corollaries have been deduced, corresponding to interpolation, upsaling, downscaling, data fusion and data assimilation respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinyemi FO, Adejuwon JO (2008) A GIS-based procedure for downscaling climate data for west Africa. Trans GIS 12(5):613–631

    Article  Google Scholar 

  • Alkhasawneh MS, Ngah UK, Tay LT, Isa NAM (2014) Determination of importance for comprehensive topographic factors on landslide hazard mapping using artificial neural network. Environ Earth Sci 72(3):787–799

    Article  Google Scholar 

  • Allen DJ, Rood RB, Thompson AM, Hidson RD (1996) Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm. J Geophys Res 101:6871–6881

    Article  Google Scholar 

  • Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, Li QB, Liu HY, Mickley LJ, Schultz MG (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res 106:23073–23095

    Article  Google Scholar 

  • Birger BI (2010) Excitation of small-scale convection in the continental lithosphere by disturbances in the topography of the Earth’s surface. Izvestiya Phys Solid Earth 46(7):627–635

    Article  Google Scholar 

  • Bragard L (1965) Method to determine the shape of the topographical earth surface by means of gravity measurements on that surface by solving two integral equations. Stud Geophys Geod 9(2):108–112

    Article  Google Scholar 

  • Buchwitz M, de Beek R, Noel S, Burrows JP, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bergamaschi P, Koerner S, Heimann M (2006) Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos Chem Phys 6:2727–2751

    Article  Google Scholar 

  • Chambers JQ, Asner GP, Morton DC, Anderson LO, Saatchi SS, Espirito-Santo FDB, Souza MPC Jr (2007) Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol Evol 22:414–423

    Article  Google Scholar 

  • Chen CF, Yue TX (2010) A method of DEM construction and related error analysis. Comput Geosci 36:717–725

    Article  Google Scholar 

  • Chen CF, Yue TX, Li YY (2012) A high speed method of SMTS. Comput Geosci 41:64–71

    Article  Google Scholar 

  • Chen CF, Li YY, Yue TX (2013a) Surface modeling of DEMs based on a sequential adjustment method. Int J Geogr Inf Sci 27(7):1272–1291

    Article  Google Scholar 

  • Chen CF, Yue TX, Dai HL, Tian MY (2013b) The smoothness of HASM. Int J Geogr Inf Sci 27(8):1651–1667

    Article  Google Scholar 

  • Chiesi M, Fibbi L, Genesio L, Gioli B, Magno R, Maselli F, Moriondo M, Vaccari FP (2011) Integration of ground and satellite data to model Mediterranean forest processes. Int J Appl Earth Obs Geoinf 13:504–515

    Article  Google Scholar 

  • De Gbaaff-Hunter J (1937) The shape of the Earth’s surface expressed in terms of gravity at ground level. Bull Géodésique 56(1):191–200

    Article  Google Scholar 

  • Dobermann A, Ping JL (2004) Geostatistical Integration of Yield Monitor Data and Remote Sensing Improves Yield Maps. Agronomy J 96:285–297

    Article  Google Scholar 

  • Emili E, Popp C, Wunderle S, Zebisch M, Petitta M (2011) Mapping particulate matter in alpine regions with satellite and ground-based measurements: An exploratory study for data assimilation. Atmos Environ 45:4344–4353

    Article  Google Scholar 

  • Franke J, Haentzschel J, Goldberg V, Bernhofer C (2008) Application of a trigonometric approach to the regionalization of precipitation for a complex small-scale terrain in a GIS environment. Meteorol Appl 15:483–490

    Article  Google Scholar 

  • Gupta M, Mohanty KK, Kumar D, Banerjee R (2014) Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture radar interferometry. Environ Earth Sci 71(6):2875–2883

    Article  Google Scholar 

  • Haber W (2012) Book review. Journal of Geographical Science 22(3):574

    Google Scholar 

  • Ionescu IR, Volkov D (2008) Earth surface effects on active faults: An eigenvalue asymptotic analysis. J Comput Appl Math 220:143–162

    Article  Google Scholar 

  • Jorgensen SE (2011) Book review. Ecol Model 222:3300

    Article  Google Scholar 

  • Kerimov IA (2009) F-approximation of the Earth’s surface topography. Izvestiya, Physics of the Solid Earth 45:719–729

    Article  Google Scholar 

  • Lahoz W, Khattatov B, Menard R (2010) Data assimilation and information. In: Lahoz W, Khattatov B, Menard R (eds) Data Assimilation: Making Sense of Observations. Springer-Verlag, Berlin, pp 3–12

    Chapter  Google Scholar 

  • Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: A review. Environ Model Softw 53:173–189

    Article  Google Scholar 

  • Lin SJ, Rood RB (1996) Multidimensional flux form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070

    Article  Google Scholar 

  • Mitchell HB (2012) Data Fusion: Concepts and Ideas. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Murray AB, Lazarus E, Ashton A, Baas A, Coco G, Coulthard T, Fonstad M, Haff P, McNamara D, Paola C, Pelletier J, Reinhardt L (2009) Geomorphology, complexity, and the emerging science of the Earth’s surface. Geomorphology 103:496–505

    Article  Google Scholar 

  • Nichols NK (2010) Mathematical concepts of data assimilation. In: Lahoz W, Khattatov B, Menard R (eds) Data Assimilation: Making Sense of Observations. Springer-Verlag, Berlin, pp 13–39

    Chapter  Google Scholar 

  • Peng Z, Zhang M, Kou X, Tian X, Ma X (2015) A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos Chem Phys 15:1087–1104

    Article  Google Scholar 

  • Peters W, Miller JB, Whitaker J, Denning AB, Hirsch A, Krol MC, Zupanski D, Bruhwiler L, Tans PP (2005) An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J Geophys Res 110:D24304. doi:10.1029/2005JD006157

    Article  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Petron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: Carbon Tracker. PNAS 104(48):18925–18930

    Article  Google Scholar 

  • Petrovskaya MS (1977) Generalization of Laplace’s expansion to the Earth’s surface. J Geodesy 51:53–62

    Google Scholar 

  • Phillips JD (1999) Earth Surface Systems. Blackwell Publishers, Oxford

    Google Scholar 

  • Phillips JD (2002) Global and local factors in earth surface systems. Ecol Model 149:257–272

    Article  Google Scholar 

  • Schlummer M, Thomas H, Dikau R, Eickmeier M, Fischer P, Gerlach R, Holzkämper J, Kalis AJ, Kretschmer I, Lauer F, Maier A, Meesenburg J, Meurers-Balke J, Münc U, Pätzoldg S, Steininger F, Stobbe A, Zimmermann A (2014) From point to area: upscaling approaches for late quaternary archaeological and environmental data. Earth Sci Rev 131:22–48

    Article  Google Scholar 

  • Shi WJ, Liu JY, Song YJ, Du ZP, Chen CF, Yue TX (2009) Surface modeling of soil pH. Geoderma 150:113–119

    Article  Google Scholar 

  • Shi WJ, Liu JY, Du ZP, Stein A, Yue TX (2011) Surface modeling of soil properties based on land use information. Geoderma 162:347–357

    Article  Google Scholar 

  • Somasundaram D (2005) Differential geometry. Alpha Science International Ltd, Harrow

    Google Scholar 

  • Stepanova IE (2007) S-Approximation of the Earth’s Surface Topography. Izvestiya Phys Solid Earth 43(6):466–475

    Article  Google Scholar 

  • Strakhov VN, Kerimov IA, Strakhov AV (1999) Linear Analytical Approximations of the Earth’s Surface Topography. Proceedings of the 1st All-Russia Conference on Geophysics and Mathematics. OIFZ RAN, Moscow, pp 198–212 [in Russian]

  • Tarolli P, Arrowsmith JR, Vivoni ER (2009) Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology 113:1–3

    Article  Google Scholar 

  • Tian X, Xie Z, Liu Y, Cai Z, Fu Y, Zhang H, Feng L (2014) A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmos Chem Phys 14:13281–13293

    Article  Google Scholar 

  • Tsutsumi Y, Mori K, Hirahara T, Ikegami M, Conway TJ (2009) Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases. World Meteorological Organization, Geneva

    Google Scholar 

  • van der Veer G, Voerkelius S, Lorentz G, Heiss G, Hoogewerff JA (2009) Spatial interpolation of the deuterium and oxygen-18 composition of global precipitation using temperature as ancillary variable. J Geochem Explor 101:175–184

    Article  Google Scholar 

  • Wang HW, Wang YH (2012) Analysis of spatial interpolation methods. Lecture Notes in Electrical Engineering 129:507–512

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Yan CQ, Zhao G, Chen CF, Wang CL, Yue TX (2015) Speeding-up the high accuracy surface modelling method with GPU. Environ Earth Sci 74(8):6511–6523

    Article  Google Scholar 

  • Yue TX (2011) Surface modelling: high accuracy and high speed methods. CRC Press, New York

    Book  Google Scholar 

  • Yue TX, Wang SH (2010) Adjustment computation of HASM: a high-accuracy and high-speed method. Int J Geogr Inf Sci 24(11):1725–1743

    Article  Google Scholar 

  • Yue TX, Du ZP, Song DJ, Gong Y (2007) A new method of surface modeling and its application to DEM construction. Geomorphology 91(1–2):161–172

    Article  Google Scholar 

  • Yue TX, Chen CF, Li BL (2010a) An adaptive method of high accuracy surface modeling and its application to simulating elevation surfaces. Trans GIS 14(5):615–630

    Article  Google Scholar 

  • Yue TX, Song DJ, Du ZP, Wang W (2010b) High-accuracy surface modelling and its application to DEM generation. Int J Remote Sens 31(8):2205–2226

    Article  Google Scholar 

  • Yue TX, Chen CF, Li BL (2012) A high accuracy method for filling SRTM voids and its verification. Int J Remote Sens 33(9):2815–2830

    Article  Google Scholar 

  • Yue TX, Zhao N, Ramsey RD, Wang CL, Fan ZM, Chen CF, Lu YM, Li BL (2013a) Climate change trend in China, with improved accuracy. Clim Change 120:137–151

    Article  Google Scholar 

  • Yue TX, Zhao N, Yang H, Song YJ, Du ZP, Fan ZM, Song DJ (2013b) The multi-grid method of high accuracy surface modelling and its validation. Trans GIS 17(6):943–952

    Article  Google Scholar 

  • Yue TX, Zhang LL, Zhao N, Zhao MW, Chen CF, Du ZP, Song DJ, Fan ZM, Shi WJ, Wang SH, Yan CQ, Li QQ, Sun XF, Yang H, Wang CL, Wang YF, Wilson J, Xu B (2015a) A Review of Recent Developments in HASM. Environ Earth Sci 74(8):6541–6549

    Article  Google Scholar 

  • Yue TX, Du ZP, Lu M, Fan ZM, Wang CL, Tian YZ, Xu B (2015b) Surface modelling of ecosystem responses to climatic change. Ecol Model 306:16–23

    Article  Google Scholar 

  • Yue TX, Zhao MW, Zhang XY (2015c) A high-accuracy method for filling voids on remotely sensed XCO2 surfaces and its verification. J Clean Prod 103:819–827

    Article  Google Scholar 

  • Zhang HF, Chen BZ, van der Laan-Luijkx IT, Chen J, Xu G, Yan JW, Zhou LX, Fukuyama Y, Tans RP, Peters W (2014a) Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res Atm 119(6):3500–3516

    Article  Google Scholar 

  • Zhang HF, Chen BZ, van der Laan-Luijkx IT, Machida T, Matsueda H, Sawa Y, Fukuyama Y, Langenfelds R, van der Schoot M, Xu G, Yan JW, Cheng ML, Zhou LX, Tans PP, Peters W (2014b) Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos Chem Phys 14:5807–5824

    Article  Google Scholar 

  • Zhang X, Drake NA, Wainwright J (2004) Scaling issues in environmental modeling. In: Wainwright J, Mulligan M (eds) Environmental modeling: finding simplicity in complexity. Wiley, Chichester, pp 319–334

    Google Scholar 

  • Zhao N, Yue TX (2014) A modification of HASM for interpolating precipitation in China. Theoret Appl Climatol 116:273–285

    Article  Google Scholar 

  • Zhao N, Chen CF, Zhou X, Yue TX (2015) A comparison of two downscaling methods for precipitation in China. Environ Earth Sci 74(8):6563–6569

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (91325204 & 41421001), by the National High-tech R&D Program of the Ministry of Science and Technology of the People’s Republic of China (2013AA122003), by the National Key Technologies R&D Program of the Ministry of Science and Technology of the People’s Republic of China (2013BACO3B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianXiang Yue.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Environment and Health in China II”, guest edited by Tian-Xiang Yue, Cui Chen, Bing Xu and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, T., Liu, Y., Zhao, M. et al. A fundamental theorem of Earth’s surface modelling. Environ Earth Sci 75, 751 (2016). https://doi.org/10.1007/s12665-016-5310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5310-5

Keywords

Navigation