Skip to main content
Log in

Harmonizing models and observations: Data assimilation in Earth system science

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Models and observations are two fundamental methodological approaches in Earth system science (ESS). They evolve collaboratively and enhance one another. However, neither of these two approaches is perfect, and they have incompatibilities due to their methodological differences. The emergence of data assimilation (DA) has enabled these two approaches to develop in conjunction and form a harmonic ESS methodology. As a result, DA has shown a fresh vitality and applicability in ESS. This paper reviews the application of DA in the main branches of ESS, traces the coordinated evolution of DA with the methodologies of rationalism and empiricism, analyzes the relationships of DA with estimation theory and cybernetics, summarizes the advances of DA in China, and presents an outlook on the challenges facing the development of a uniform DA for ESS. DA theories and methods will continue to evolve and provide an increasingly mature methodology for enhancing the understanding and prediction of Earth as a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buizza R, Brönnimann S, Haimberger L, Laloyaux P, Martin M J, Fuentes M, Alonso-Balmaseda M, Becker A, Blaschek M, Dahlgren P, de Boisseson E, Dee D, Doutriaux-Boucher M, Feng X, John V O, Haines K, Jourdain S, Kosaka Y, Lea D, Lemarié F, Mayer M, Messina P, Perruche C, Peylin P, Pullainen J, Rayner N, Rustemeier E, Schepers D, Saunders R, Schulz J, Sterin A, Stichelberger S, Storto A, Testut C E, Valente M A, Vidard A, Vuichard N, Weaver A, While J, Ziese M. 2018. The EU-FP7 ERA-CLIM2 project contribution to advancing science and production of earth system climate reanalyses. Bull Amer Meteorol Soc, 1: 1003–1014

    Article  Google Scholar 

  • Cao Y, Zhu J, Navon I M, Luo Z. 2007. A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int J Numer Meth Fluids, 1: 1571–1583

    Article  Google Scholar 

  • Ghahramani Z. 2015. Probabilistic machine learning and artificial intelligence. Nature, 1: 452–459

    Article  Google Scholar 

  • Chang H, Zhang D. 2019. Identification of physical processes via combined data-driven and data-assimilation methods. J Comput Phys, 1: 337–350

    Article  Google Scholar 

  • Chassignet E P, Hurlburt H E, Smedstad O M, Halliwell G R, Hogan P J, Wallcraft A J, Baraille R, Bleck R. 2007. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J Marine Syst, 1: 60–83

    Article  Google Scholar 

  • Che T, Li X, Jin R, Huang C. 2014. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens Environ, 1: 54–63

    Article  Google Scholar 

  • Chen F, Fu B, Xia J, Wu D, Wu S, Zhang Y, Sun H, Liu Y, Fang X, Qin B, Li X, Zhang T, Liu B, Dong Z, Hou S, Tian L, Xu B, Dong G, Zheng J, Yang W, Wang X, Li Z, Wang F, Hu Z, Wang J, Liu J, Chen J, Huang W, Hou J, Cai Q, Long H, Jiang M, Hu Y, Feng X, Mo X, Yang X, Zhang D, Wang X, Yin Y, Liu X. 2019. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Sci China Earth Sci, 1: 1665–1701

    Article  Google Scholar 

  • Compo G P, Whitaker J S, Sardeshmukh P D, Matsui N, Allan R J, Yin X, Gleason B E, Vose R S, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel R I, Grant A N, Groisman P Y, Jones P D, Kruk M C, Kruger A C, Marshall G J, Maugeri M, Mok H Y, Nordli Ø, Ross T F, Trigo R M, Wang X L, Woodruff S D, Worley S J. 2011. The Twentieth Century reanalysis project. Q J R Meteorol Soc, 1: 1–28

    Article  Google Scholar 

  • Cummings J A. 2005. Operational multivariate ocean data assimilation. Q J R Meteorol Soc, 1: 3583–3604

    Article  Google Scholar 

  • Drenkard E J, Karnauskas K B. 2014. Strengthening of the Pacific equatorial undercurrent in the SODA reanalysis: Mechanisms, ocean dynamics, and implications. J Clim, 1: 2405–2416

    Article  Google Scholar 

  • Duan W, Liu X, Zhu K, Mu M. 2009. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J Geophys Res, 114: C04022

    Google Scholar 

  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res, 1: 10143–10162

    Article  Google Scholar 

  • Fang M, Li X. 2016. Paleoclimate data assimilation: Its motivation, progress and prospects. Sci China Earth Sci, 1: 1817–1826

    Article  Google Scholar 

  • Forget G, Campin J M, Heimbach P, Hill C N, Ponte R M, Wunsch C. 2015. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev, 1: 3071–3104

    Article  Google Scholar 

  • Fournier A, Hulot G, Jault D, Kuang W, Tangborn A, Gillet N, Canet E, Aubert J, Lhuillier F. 2010. An introduction to data assimilation and predictability in geomagnetism. Space Sci Rev, 1: 247–291

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez M J, Todling R, Molod A, Takacs L, Randles C A, Darmenov A, Bosilovich M G, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva A M, Gu W, Kim G K, Koster R, Lucchesi R, Merkova D, Nielsen J E, Partyka G, Pawson S, Putman W, Rienecker M, Schubert S D, Sienkiewicz M, Zhao B. 2017. The Modern-Era retrospective analysis for research and applications, Version 2 (MERRA-2). J Clim, 1: 5419–5454

    Article  Google Scholar 

  • Gordon N J, Salmond D J, Smith A F M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F-Radar Signal Process UK, 1: 107–113

    Article  Google Scholar 

  • Hakim G J, Emile-Geay J, Steig E J, Noone D, Anderson D M, Tardif R, Steiger N, Perkins W A. 2016. The last millennium climate reanalysis project: Framework and first results. J Geophys Res-Atmos, 1: 6745–6764

    Article  Google Scholar 

  • Han X, Li X. 2008. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sens Environ, 1: 1434–1449

    Article  Google Scholar 

  • Han X J, Li X, Hendricks Franssen H J, Vereecken H, Montzka C. 2012. Spatial horizontal correlation characteristics in the land data assimilation of soil moisture. Hydrol Earth Syst Sci, 1: 1349–1363

    Article  Google Scholar 

  • He J, Zhang F, Chen X, Bao X, Chen D, Kim H M, Lai H W, Leung L R, Ma X, Meng Z, Ou T, Xiao Z, Yang E G, Yang K. 2019. Development and evaluation of an ensemble-based data assimilation system for regional reanalysis over the Tibetan Plateau and surrounding regions. J Adv Model Earth Syst, 1: 2503–2522

    Article  Google Scholar 

  • Hoshiba M, Aoki S. 2015. Numerical shake prediction for earthquake early warning: Data assimilation, real-time shake mapping, and simulation of wave propagation. Bull Seismol Soc Amer, 1: 1324–1338

    Article  Google Scholar 

  • Huang C, Li X, Lu L. 2008. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sens Environ, 1: 1320–1336

    Article  Google Scholar 

  • Huang C, Chen W, Li Y, Shen H, Li X. 2016. Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric For Meteorol, 230-1: 142–156

    Article  Google Scholar 

  • Hurlburt H, Brassington G B, Drillet Y, Masafumi K, Mounir B, Bourdalle-Badie R, Chassignet E, Jacobbs G A, Le Galloudec O, Lellouche J M, Metzger E, Oke P, Pugh T F, Schiller A, Smedstad O, Tranchant B, Tsujino H, Usui N, Walcraft A J. 2009. High-resolution global and basin-scale ocean analyses and forecasts oceanography. Oceanography, 1: 80–97

    Google Scholar 

  • Kalman R E. 1960. A new approach to linear filtering and prediction problems. J Basic Eng, 1: 35–45

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year re-analysis project. Bull Amer Meteorol Soc, 1: 437–471

    Article  Google Scholar 

  • Karspeck A R, Stammer D, Köhl A, Danabasoglu G, Balmaseda M, Smith D M, Fujii Y, Zhang S, Giese B, Tsujino H, Rosati A. 2017. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim Dyn, 1: 957–982

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. J Meteorol Soc Jpn, 1: 5–48

    Article  Google Scholar 

  • Li X. 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci China Earth Sci, 1: 80–87

    Article  Google Scholar 

  • Li X, Cheng G, Liu S, Xiao Q, Ma M, Jin R, Che T, Liu Q, Wang W, Qi Y, Wen J, Li H, Zhu G, Guo J, Ran Y, Wang S, Zhu Z, Zhou J, Hu X, Xu Z. 2013. Heihe watershed allied telemetry experimental research (Hi-WATER): Scientific objectives and experimental design. Bull Amer Meteorol Soc, 1: 1145–1160

    Article  Google Scholar 

  • Li X, Huang C, Che T, Jin R, Wang S, Wang J, Gao F, Zhang S, Qiu C, Wang C. 2007. Development of a Chinese land data assimilation system: Its progress and prospects. Prog Nat Sci, 1: 881–892

    Google Scholar 

  • Li X, Bai Y L. 2010. A Bayesian filter framework for sequential data assimilation. Adv Earth Sci, 1: 515–522

    Google Scholar 

  • Liao J, Hu K X, Jiang H, Cao L J, Jiang L P, Li Q L, Zhou Z J, Liu Z Q, Zhang T, Wang H Y. 2018. Pre-process and data selection for assimilation of conventional observations in the CMA global atmospheric reanalysis (in Chinese). Adv Meteorol Sci Technol, 8:133–142

    Google Scholar 

  • Liu F, Li X. 2017. Formulation of scale transformation in a stochastic data assimilation framework. Nonlin Processes Geophys, 1: 279–291

    Article  Google Scholar 

  • Liu F, Wang L, Li X, Huang C L. 2020. ComDA: A common software for nonlinear and non-Gaussian land data assimilation. Environ Model Software, 127: 104638

    Article  Google Scholar 

  • Lorenz E N. 1963. Deterministic nonperiodic flow. J Atmos Sci, 1: 130–141

    Article  Google Scholar 

  • Luo X, Hoteit I. 2011. Robust ensemble filtering and its relation to cov-ariance inflation in the ensemble Kalman filter. Mon Weather Rev, 1: 3938–3953

    Article  Google Scholar 

  • Martin M J, Hines A, Bell M J. 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Q J R Meteorol Soc, 1: 981–995

    Article  Google Scholar 

  • McLaughlin D. 1995. Recent developments in hydrologic data assimilation. Rev Geophys, 1: 977–984

    Article  Google Scholar 

  • Mitchell K E, Lohmann D, Houser P R, Wood E F, Schaake J C, Robock A, Cosgrove B A, Sheffield J, Duan Q, Luo L, Higgins R W, Pinker R T, Tarpley J D, Lettenmaier D P, Marshall C H, Entin J K, Pan M, Shi W, Koren V, Meng J, Ramsay B H, Bailey A A. 2004. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res, 109: D07S90

    Google Scholar 

  • Miyoshi T, Kunii M, Ruiz J, Lien G Y, Satoh S, Ushio T, Bessho K, Seko H, Tomita H, Ishikawa Y. 2016. “Big Data Assimilation” revolutionizing severe weather prediction. Bull Amer Meteorol Soc, 1: 1347–1354

    Article  Google Scholar 

  • Mu M, Xu H, Duan W. 2007. A kind of initial errors related to “spring predictability barrier” for EL Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709

    Article  Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat N. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 1: 195–204

    Article  Google Scholar 

  • Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D, Toll D. 2004. The global land data assimilation system. Bull Amer Meteorol Soc, 1: 381–394

    Article  Google Scholar 

  • Ruti P M, Tarasova O, Keller J H, Carmichael G, Hov Ø, Jones S C, Terblanche D, Anderson-Lefale C, Barros A P, Bauer P, Bouchet V, Brasseur G, Brunet G, DeCola P, Dike V, Kane M D, Gan C, Gurney K R, Hamburg S, Hazeleger W, Jean M, Johnston D, Lewis A, Li P, Liang X, Lucarini V, Lynch A, Manaenkova E, Jae-Cheol N, Ohtake S, Pinardi N, Polcher J, Ritchie E, Sakya A E, Saulo C, Singhee A, Sopaheluwakan A, Steiner A, Thorpe A, Yamaji M. 2020. Advancing research for seamless earth system prediction. Bull Amer Meteorol Soc, 101: E23–E35

    Article  Google Scholar 

  • Shi C X, Xie Z H, Qian H, Liang M L, Yang X C. 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci China Earth Sci, 1: 1430–1440

    Article  Google Scholar 

  • Steiger N J, Smerdon J E, Cook E R, Cook B I. 2018. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci Data, 5: 180086

    Article  Google Scholar 

  • Swift J H, Aagaard K, Timokhov L, Nikiforov E G. 2005. Long-term variability of Arctic Ocean waters: Evidence from a reanalysis of the EWG data set. J Geophys Res, 110: C03012

    Article  Google Scholar 

  • Talagrand O. 1997. Assimilation of observations, an introduction. J Meteorol Soc Jpn, 1: 191–209

    Article  Google Scholar 

  • Talagrand O, Courtier P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q J R Meteorol Soc, 1: 1311–1328

    Article  Google Scholar 

  • Tenenbaum J B. 1999. Bayesian modeling of human concept learning. Cambridge: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II. 59–68

  • Tian X, Xie Z, Sun Q. 2011. A POD-based ensemble four-dimensional variational assimilation method. Tellus A-Dyn Meteorol Oceanogr, 1: 805–816

    Article  Google Scholar 

  • Tian X, Zhang H, Feng X, Xie Y. 2018. Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation, analysis, and preliminary evaluation. Mon Weather Rev, 1: 77–93

    Article  Google Scholar 

  • Uppala S M, KÅllberg P W, Simmons A J, Andrae U, Bechtold V D C, Fiorino M, Gibson J K, Haseler J, Hernandez A, Kelly G A, Li X, Onogi K, Saarinen S, Sokka N, Allan R P, Andersson E, Arpe K, Balmaseda M A, Beljaars A C M, Berg L V D, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B J, Isaksen L, Janssen P A E M, Jenne R, Mcnally A P, Mahfouf J F, Morcrette J J, Rayner N A, Saunders R W, Simon P, Sterl A, Trenberth K E, Untch A, Vasiljevic D, Viterbo P, Woollen J. 2005. The ERA-40 re-analysis. Q J R Meteorol Soc, 1: 2961–3012

    Article  Google Scholar 

  • Wang T, Jin X, Huang Y, Wei Y. 2017. Real-time 3-D space numerical shake prediction for earthquake early warning. Earthq Sci, 1: 269–281

    Article  Google Scholar 

  • Wang B, Liu J, Wang S, Cheng W, Juan L, Liu C, Xiao Q, Kuo Y H. 2010. An economical approach to four-dimensional variational data assimilation. Adv Atmos Sci, 1: 715–727

    Article  Google Scholar 

  • Wang H, Wan L Y, Qin Y H, Wang Y, Yang X L, Liu Y, Xing J Y, Chen L, Wang Z G, Zhang T Y, Liu G M, Yang Q H, Wu X Y, Liu Q Y, Wang D X. 2016. Development and application of the Chinese global operational oceanography forecasting system (in Chinese). Adv Earth Sci, 1: 1090–1104

    Google Scholar 

  • Wang M Y, Yao S, Jiang L P, Liu Z Q, Shi C X, Hu K X, Zhang T, Zhang Z S, Liu J W. 2018. Collection and pre-processing of satellite remote sensing data in CRA-40 (CMA’s global atmospheric ReAnalysis) (in Chinese). Adv Meteorol Sci Technol, 8:158–163

    Google Scholar 

  • Xia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo L, Alonge C, Wei H, Meng J, Livneh B, Lettenmaier D, Koren V, Duan Q, Mo K, Fan Y, Mocko D. 2012. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J Geophys Res, 117: D03109

    Google Scholar 

  • Zhang F, Weng Y, Gamache J F, Marks F D. 2011. Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys Res Lett, 38: L15810

    Google Scholar 

  • Zhang H, Tian X. 2018. An efficient local correlation matrix decomposition approach for the localization implementation of ensemble-based assimilation methods. J Geophys Res, 1: 3556–3573

    Google Scholar 

  • Zuo H, Balmaseda M A, Mogensen K. 2015. The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Clim Dyn, 1: 791–811

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070104), the National Natural Science Foundation of China (Grant Nos. 41801270 and 41701046), and the 13th Five-year Informatization Plan of the Chinese Academy of Sciences (Grant No. XXH13505-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, F. & Fang, M. Harmonizing models and observations: Data assimilation in Earth system science. Sci. China Earth Sci. 63, 1059–1068 (2020). https://doi.org/10.1007/s11430-019-9620-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9620-x

Keywords

Navigation