Skip to main content

Advertisement

Log in

Use of a MM5–CAMx–PSAT Modeling System to Study SO2 Source Apportionment in the Beijing Metropolitan Region

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A coupled MM5–CAMx air quality modeling system was used to simulate SO2 concentrations in Beijing, China during the heating season. Particulate matter source apportionment technology was employed to investigate the apportionment of SO2 sources in the study area. Comprehensive analysis of the industry and region revealed that the most important SO2 contributors were publicly and privately supplied heating emission sources and other industry emission sources from the urban areas of Beijing, with 66.1 % of the emission source contribution ratio. Four SO2 emission reduction scenarios based on our SO2 source apportionment research were established to assess the potential for improving the SO2 air quality in Beijing during the heating season. By weighing the desired SO2 improvement, the availability of technology, and economic considerations, a suitable SO2 reduction plan was able to be recommended for Beijing city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benkovitz, C. M., Berdowski, J. J. M., & Veldt, C. (1995). The GEIA global gridded inventory of anthropogenic VOCs. In The emission inventory: Applications and improvement, Raleigh (pp. 609–618). Pittsburgh: Air & Waste Management Association.

    Google Scholar 

  2. BJEPB (Beijing Environmental Protection Bureau). (2008). 2007 Beijing environmental assessment annual report. Beijing: Beijing Municipal Government Publication Series.

    Google Scholar 

  3. Chen, D. S., Cheng, S. Y., Li, J. B., Zhao, X. Y., Guo, X. R., Hu, H. L., et al. (2007). Application of LIDAR technique and MM5–CMAQ modeling approach for the assessment of winter PM10 air pollution: A case study in Beijing, China. Water, Air and Soil Pollution, 181, 409–427.

    Article  CAS  Google Scholar 

  4. Chen, D. S., Cheng, S. Y., Liu, L., Chen, T., & Guo, X. R. (2007). An integrated MM5–CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic Summer Games—Beijing, China. Atmospheric Environment, 41, 1237–1250.

    Article  CAS  Google Scholar 

  5. Chen, F., & Dudhia, J. (2001). Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Reviews, 129, 569–585.

    Article  Google Scholar 

  6. Chen, F., & Dudhia, J. (2001). Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Preliminary model validation. Monthly Weather Reviews, 129, 587–604.

    Article  Google Scholar 

  7. Cheng, S. Y., Chen, D. S., Li, J. B., Wang, H. Y., & Guo, X. R. (2007). The assessment of emission-source contributions to air quality by using a coupled MM5–ARPS–CMAQ modeling system: A case study in the Beijing metropolitan region, China. Environmental Modelling & Software, 22(11), 1601–1616.

    Article  Google Scholar 

  8. Cheng, S. Y., Chen, D. S., Li, J. B., Guo, X. R., & Wang, H. Y. (2007). An ARPS–CMAQ modeling approach for assessing the atmospheric assimilative capacity of the Beijing metropolitan region. Water, Air and Soil Pollution, 181, 211–224.

    Article  CAS  Google Scholar 

  9. Dudhia, J., Gill, D., Manning, K., Wang, W., & Bruyere, C. (2004). PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3. Boulder: National Center for Atmospheric Research.

    Google Scholar 

  10. Dunker, A. M., Yarwood, G., Ortmann, J. P., & Wilson, G. M. (2002). Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model. Environmental Science & Technology, 36(13), 2953–2964.

    Article  CAS  Google Scholar 

  11. Eisinger, M., & Burrows, J. P. (1998). Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophysical Research Letters, 25(22), 4177–4180.

    Article  CAS  Google Scholar 

  12. ENVIRON. (2006). User’s guide for the comprehensive air quality model with extensions (CAMx), version 4.40. Novato: ENVIRON International Corporation.

    Google Scholar 

  13. Grell, G. A., Emeis, S., Stockwell, W. R., Schoenemeyer, T., Forkel, R., Michalakes, J., et al. (2000). Application of the multiscale, integrated MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmospheric Environment, 34, 1435–1453.

    Article  CAS  Google Scholar 

  14. Hao, J. M., He, D. Q., Wu, Y., Fu, L. X., & He, K. B. (2000). A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing. Atmospheric Environment, 34(3), 453–465.

    Article  CAS  Google Scholar 

  15. Houyoux, M. R., Vukovich, J. M., Coats, C. J., Wheeler, N. J. M., & Kasibhatla, P. (2000). Emission inventory development and processing for the seasonal model for regional air quality project. Journal of Geophysical Research-Atmospheres, 105(D7), 9079–9090.

    Article  CAS  Google Scholar 

  16. Huang, Q., Cheng, S. Y., Li, Y. P., Li, J. B., Chen, D. S., & Wang, H. Y. (2010). An integrated MM5–CAMx modeling approach for assessing PM10 contribution from different sources in Beijing, China. Journal of Environmental Informatics, 15(2), 47–61.

    Google Scholar 

  17. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    Article  CAS  Google Scholar 

  18. Krotkov, N. A., Carn, S. A., Krueger, A. J., Bhartia, P. K., & Yang, K. (2006). Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1259–1266.

    Article  Google Scholar 

  19. Matsumi, Y., Shigemori, H., & Takahashi, K. (2005). Laser-induced fluorescence instrument for measuring atmospheric SO2. Atmospheric Environment, 39(17), 3177–3185.

    Article  CAS  Google Scholar 

  20. Meng, Z. Y., Ding, G. A., Xu, X. B., Xu, X. D., Yu, H. Q., & Wang, S. F. (2008). Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China. Science of the Total Environment, 390, 456–465.

    Article  CAS  Google Scholar 

  21. Pan, X. C., Yue, W., He, K. B., & Tong, S. L. (2007). Health benefit evaluation of the energy use scenarios in Beijing, China. Science of the Total Environment, 374, 242–251.

    Article  CAS  Google Scholar 

  22. Song, Y., Zhang, Y. H., Xie, S. D., Zeng, L. M., Zheng, M., Salmon, L. G., et al. (2006). Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment, 40(8), 1526–1537.

    Article  CAS  Google Scholar 

  23. Song, Y., Xie, S. D., Zhang, Y. H., Zeng, L. M., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment, 372(1), 278–286.

    Article  CAS  Google Scholar 

  24. Song, Y., Miao, W. J., Liu, B., Dai, W., & Cai, X. H. (2008). Identifying anthropogenic and natural influences on extreme pollution of respirable suspended particulates in Beijing using backward trajectory analysis. Journal of Hazardous Materials, 154(1–3), 459–468.

    Article  CAS  Google Scholar 

  25. Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., et al. (2003). The MICS-Asia Phase II emission inventory. In: the Sixth Workshop on the Transport of Air Pollutants in Asia (Model Intercomparison Study—MICS-Asia), International Institute for Applied Systems Analysis, Laxenburg, Austria.

  26. Sun, Y., Wang, Y. S., & Zhang, C. C. (2009). Measurement of the vertical profile of atmospheric SO2 during the heating period in Beijing on days of high air pollution. Atmospheric Environment, 43, 468–472.

    Article  CAS  Google Scholar 

  27. Wagstrom, K. M., Pandis, S. N., Yarwood, G., Wilson, G. M., & Morris, R. E. (2008). Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model. Atmospheric Environment, 42(22), 5650–5659.

    Article  CAS  Google Scholar 

  28. Wang, T., & Xie, S. D. (2009). Assessment of traffic-related air pollution in the urban streets before and during the 2008 Beijing Olympic Games traffic control period. Atmospheric Environment, 43(35), 5682–5690.

    Article  CAS  Google Scholar 

  29. Yarwood, G., Wilson, G., & Morris, R. (2005). Development of the CAMx Particulate Source Apportionment Technology (PSAT)—Final Report. Novato: ENVIRON International Corporation.

    Google Scholar 

  30. Yarwood, G., Grant, J., Koo, B., & Dunker, A. M. (2008). Modeling weekday to weekend changes in emissions and ozone in the Los Angeles basin for 1997 and 2010. Atmospheric Environment, 42(16), 3765–3779.

    Article  CAS  Google Scholar 

  31. Ying, G. X., Ma, J., & Yi, X. (2007). Comparison of air quality management strategies of PM10, SO2, and NOx by an industrial source complex model in Beijing. Environment Progress, 26(1), 33–42.

    Article  CAS  Google Scholar 

  32. Zhou, Y., Levy, J. I., Hammitt, J. K., & Evans, J. S. (2003). Estimating population exposure to power plant emissions using CALPUFF: A case study in Beijing, China. Atmospheric Environment, 37, 815–826.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the “National Basic Research (973) Program” Project (no. 2005CB724201) and High Technology Project (863) (nos. 2006AA06A305-4, 2006AA06A306-5, and 2006AA06A307-5) of the Ministry of Science and Technology of China. The authors would like to thank the Natural Sciences Foundation of China (no. 50878006) as well as the Fundamental Research Funds for the Central Universities (no. 21611344) for supporting the research work. We would also like to thank C. Emery and G. Wilson from ENVIRON International Corporation for their technical suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., Cheng, S., Perozzi, R.E. et al. Use of a MM5–CAMx–PSAT Modeling System to Study SO2 Source Apportionment in the Beijing Metropolitan Region. Environ Model Assess 17, 527–538 (2012). https://doi.org/10.1007/s10666-012-9312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9312-8

Keywords

Navigation