Skip to main content

Advertisement

Log in

Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aladar V, Aron N (2018) Bio-based 3-hydroxypropionic acid: a review. Periodica Polytech Chem Eng 62:156–166

    Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • An WL, Chin JW (2009) Synthesis of orthogonal transcription-translation networks. Proc Natl Acad Sci USA 106:8477–8482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeßen B, Lange AB, Robenek H, Steinbuchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626

    Article  PubMed  Google Scholar 

  • Appukuttan D, Singh H, Park SH, Jung JH, Jeong S, Seo HS, Choi YJ, Lim S (2015) Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Appl Environ Microbiol 82:1154–1166

    Article  PubMed  Google Scholar 

  • Ashok S, Raj SM, Ko Y, Sankaranarayanan M, Zhou SF, Kumar V, Park S (2013) Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpK ΔdhaT. Metab Eng 15:10–24

    Article  CAS  PubMed  Google Scholar 

  • Ball AS, van Kessel JC (2019) The master quorum sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae. Mol Microbiol 111:1317–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battesti A, Majdalani N, Gottesman S (2015) Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proc Natl Acad Sci USA 112:5159–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF (2012) Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 109:478–483

    Article  CAS  PubMed  Google Scholar 

  • Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, Schneider K, Lamosa P, Herrgard MJ, Rosenstand I, Oberg F, Forster J, Nielsen J (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64

    Article  CAS  PubMed  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Burgard AP, van Dien SJ (2008) Methods and organisms for growth-coupled production of 3-hydroxypropionic acid. U.S. Patent Application, 8673601B2

  • Cha S, Lim HG, Kwon S, Kim D, Kang CW, Jung GY (2021) Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab Eng 64:146–153

    Article  CAS  PubMed  Google Scholar 

  • Chang ZS, Dai W, Mao YF, Cui ZZ, Wang ZW, Chen T (2020) Engineering Corynebacterium glutamicum for the efficient production of 3-hydroxypropionic acid from a mixture of glucose and acetate via the malonyl-CoA pathway. Catalysts 10:203–214

    Article  CAS  Google Scholar 

  • Chemarin F, Moussa M, Chadni M, Pollet B, Lieben P, Allais F, Trelea IC, Athès V (2017) New insights in reactive extraction mechanisms of organic acids: an experimental approach for 3-hydroxypropionic acid extraction with tri-n-octylamine. Sep Purif Technol 179:523–532

    Article  CAS  Google Scholar 

  • Chen Z, Huang JH, Wu Y, Wu WJ, Zhang Y, Liu DH (2017) Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 39:151–158

    Article  CAS  PubMed  Google Scholar 

  • Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95:841–850

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Jiang JQ, Wu H, Li ZM, Ye Q (2016) Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Biores Technol 200:897–904

    Article  CAS  Google Scholar 

  • Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  PubMed  Google Scholar 

  • Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, Song SH, Choi IS, Cho KM (2015) Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioeng 112:356–364

    Article  CAS  PubMed  Google Scholar 

  • Chun AY, Liang YX, Ashok S, Seol E, Park S (2014) Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnol Bioprocess Eng 19:858–865

    Article  CAS  Google Scholar 

  • Conrado RJ, Wu GC, Boock JT, Xu HS, Chen SY, Lebar T, Turnsek J, Tomsic N, Avbelj M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Bencina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa MP (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889

    Article  CAS  PubMed  Google Scholar 

  • de Fouchécour F, Sánchez-Castañeda AK, Saulou-Bérion C, Spinnler HÉ (2018) Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol Adv 36:1207–1222

    Article  PubMed  Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    CAS  PubMed  Google Scholar 

  • Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R (2014) Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb Cell Fact 13:76–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Dishisha T, Pyo SH, Hatti-Kaul R (2015) Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact 14:200–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Dishisha T, Sabet-Azad R, Arieta V, Hatti-Kaul R (2019) Lactobacillus reuteri NAD(P)H oxidase: Properties and coexpression with propanediol-utilization enzymes for enhancing 3-hydroxypropionic acid production from 3-hydroxypropionaldehyde. J Biotechnol 289:135–143

    Article  CAS  PubMed  Google Scholar 

  • Equbal MJ, Srivastava P, Agarwal GP, Deb JK (2013) Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter. Appl Microbiol Biotechnol 97:7755–7766

    Article  CAS  PubMed  Google Scholar 

  • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537

    Article  CAS  PubMed  Google Scholar 

  • Finnegan I (2015) Method for producing esters of 3-hydroxypropionic acid. U.S. Patent Application, 10131925B2.

  • Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Ben-Bassat A, Chauhan S, Payne MS, Hennessey SM, DiCosimo R (2003) Biocatalytic hydrolysis of 3-hydroxyalkanenitriles to 3-hydroxyalkanoic acids. Adv Synth Catal 345:775–782

    Article  CAS  Google Scholar 

  • Holo H, Sirevåg R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145:173–180

    Article  CAS  Google Scholar 

  • Hong Y, Ren J, Zhang XY, Wang W, Zeng AP (2020) Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol 64:70–78

    Article  CAS  PubMed  Google Scholar 

  • Hoppe C, Hoyt SM, Tengler R, de Coster D, Harkrader B, Au-Yeung PH, Biswas S, Vargas P, Roach RP, Frank TC (2016) 3-Hydroxypropionic acid compositions. U.S. Patent Application, US9512057B2

  • Huang MT, Wang GK, Qin JF, Petranovic D, Nielsen J (2018) Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci USA 115:11025–11032

    Article  Google Scholar 

  • Huang YN, Li ZM, Shimizu K, Ye Q (2013) Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions. Biores Technol 128:505–512

    Article  CAS  Google Scholar 

  • Huang YN, Li ZM, Shimizu K, Ye Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Biores Technol 103:351–359

    Article  CAS  Google Scholar 

  • Hügler M, Menendez C, Schägger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen NB, Borodina R, Chen Y, Maury J, Kildegaard KR, Forster J, Nielsen J (2014) Microbial production of 3-hydroxypropionic acid. WIPO Patent Application, WO2014198831A1.

  • Jers C, Kalantari A, Garg A, Mijakovic I (2019) Production of 3-hydroxypropanoic acid from glycerol by metabolically engineered bacteria. Front Bioeng Biotechnol 7:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang JQ, Huang B, Wu H, Li ZM, Ye Q (2018) Efficient 3-hydroxypropionic acid production from glycerol by metabolically engineered Klebsiella pneumoniae. Bioresour Bioprocess 5:34

    Article  Google Scholar 

  • Jiang XR, Yan X, Yu LP, Liu XY, Chen GQ (2021) Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun 12:1513–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37

    Article  CAS  PubMed  Google Scholar 

  • Jung IY, Lee JW, Min WK, Park YC, Seo JH (2015) Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis. Biores Technol 198:709–716

    Article  CAS  Google Scholar 

  • Jung WS, Kang JH, Chu HS, Choi IS, Cho KM (2014) Elevated production of 3-hydroxypropionic acid by metabolic engineering of glycerol metabolism in Escherichia coli. Metab Eng 23:116–122

    Article  CAS  PubMed  Google Scholar 

  • Kalantari A, Chen T, Ji BY, Stancik IA, Ravikumar V, Franjevic D, Saulou-Bérion C, Goelzer A, Mijakovic I (2017) Conversion of glycerol to 3-hydroxypropanoic acid by genetically engineered Bacillus subtilis. Front Microbiol 8:638

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyanpur M (2002) Downstream processing in the biotechnology industry. Mol Biotechnol 22:87–98

    Article  CAS  PubMed  Google Scholar 

  • Karp EM, Eaton TR, Sànchez i Nogué V, Vorotnikov V, Biddy MJ, Tan ECD, Brandner DG, Cywar RM, Liu R M, Manker LP, Michener WE, Gilhespy M, Skoufa Z, Watson MJ, Fruchey OS, Vardon DR, Gill RT, Bratis AD, Beckham GT (2017) Renewable acrylonitrile production. Science 358:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MWW (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA 110:5840–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Seo JW, Luo LH, Oh BR, Seo PS, Heo SY (2009) Novel method of producing 3-hydroxypropionic acid from glycerol. U.S. Patent Application, 20120270287A1.

  • Kim JW, Ko YS, Chae TU, Lee SY (2020) High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli. Biotechnol Bioeng 117:2139–2152

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Park JC, Park SM, Koo HM, Yu BJ, Cho HY, Park YK (2012) Genetic modification for production of 3-hydroxypropionic acid. U.S. Patent Application, 8541212B2.

  • Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Biores Technol 156:170–175

    Article  CAS  Google Scholar 

  • Klumpp S, Hwa T (2008) Growth-rate-dependent partitioning of RNA polymerases in bacteria. Proc Natl Acad Sci USA 105:20245–20250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S (2014) Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol J 9:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Ko Y, Seol E, Sekar BS, Kwon S, Lee J, Park S (2017) Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: reduction of acetate and other by-products. Biores Technol 244:1096–1103

    Article  CAS  Google Scholar 

  • Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36:150–167

    Article  CAS  PubMed  Google Scholar 

  • Kumar VVS, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    Article  CAS  PubMed  Google Scholar 

  • Lama S, Kim Y, Nguyen DT, Im CH, Sankaranarayanan M, Park S (2021) Production of 3-hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown Escherichia coli. Bioresour Technol 320:124362

    Article  CAS  PubMed  Google Scholar 

  • Lan EI, Chuang DS, Shen CR, Lee AM, Ro SY, Liao JC (2015) Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab Eng 31:163–170

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Park SJ, Park OJ, Cho J, Rhee JW (2009) Production of 3-hydroxypropionic acid from acrylic acid by newly isolated Rhodococcus erythropolis LG12. J Microbiol Biotechnol 19:474–481

    Article  CAS  PubMed  Google Scholar 

  • Lee TY, Min WK, Kim HJ, Seo JH (2020) Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways. Bioresour Technol 299:122600

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhang LX, Wang L, Chen L, Zhao RR, Sheng JP, Shen L (2018) Reduction of tomato-plant chilling tolerance by CRISPR-Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 66:9042–9051

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang X, Ge XZ, Tian PF (2016) High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci Rep 6:26932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang B, Sun GN, Wang ZB, Xiao J, Yang JM (2019) Production of 3-hydroxypropionate using a novel malonyl-CoA-mediated biosynthetic pathway in genetically engineered E. coli strain. Green Chem 21:6103–6115

    Article  CAS  Google Scholar 

  • Liao HH, Gokarn RR, Gort SJ, Jessen HJ, Selifonova O (2010) Alanine 2, 3-aminomutase. U.S. Patent Application, 0099167A1

  • Lim HG, Noh MH, Jeong JH, Park S, Jung GY (2016) Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth Biol 5:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb TEW, Lynch MD, Gill RT (2012) Methods, systems and compositions for increased microorganism tolerance to and production of 3-hydroxypropionic acid (3-HP). U.S. Patent Application, 20120264902A1

  • Liu B, Xiang SM, Zhao G, Wang BJ, Ma YH, Liu WF, Tao Y (2019) Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab Eng 51:121–130

    Article  CAS  PubMed  Google Scholar 

  • Liu CS, Ding YM, Xian M, Liu M, Liu HZ, Ma QJ, Zhao G (2017) Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol 37(7):933–941

    Article  PubMed  Google Scholar 

  • Liu CS, Ding YM, Zhang RB, Liu HZ, Xian M, Zhao G (2016a) Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng 34:104–111

    Article  PubMed  Google Scholar 

  • Liu CS, Wang Q, Xian M, Ding YM, Zhao G (2013) Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS ONE 8:e75554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Yao L, Xian M, Ding YM, Liu HZ, Zhao G (2016b) Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli. Biotech Lett 38:97–101

    Article  CAS  Google Scholar 

  • Liu RM, Liang LY, Choudhury A, Bassalo MC, Garst AD, Tarasava K, Gill RT (2018) Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. Metab Eng 47:303–313

    Article  CAS  PubMed  Google Scholar 

  • López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904

    Article  PubMed  Google Scholar 

  • Luo H, Zhou DF, Liu XH, Nie ZH, Quiroga-Sánchez DL, Chang YH (2016) Production of 3-hydroxypropionic acid via the propionyl-CoA pathway using recombinant Escherichia coli strains. PLoS ONE 11:e0156286

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch MD, Gill RT, Warnecke-Lipscomb TE (2011) Method for producing 3-hydroxypropionic acid and other products. U.S. Patent Application, 009388419B2.

  • Matsakas L, Hruzová K, Rova U, Christakopoulos P (2018) Biological production of 3-hydroxypropionic acid: an update on the current status. Fermentation 4:13–33

    Article  Google Scholar 

  • Matsakas L, Topakas E, Christakopoulos P (2014) New trends in microbial production of 3-hydroxypropionic acid. Curr Biochem Eng 1:141–154

    Article  CAS  Google Scholar 

  • Meng DC, Shi ZY, Wu LP, Zhou Q, Wu Q, Chen JC, Chen GQ (2012) Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14:317–324

    Article  CAS  PubMed  Google Scholar 

  • Meng DC, Wang Y, Wu LP, Shen R, Chen JC, Wu Q, Chen GQ (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Meussen BJ, de Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murali N, Srinivas K, Ahring BK (2017) Biochemical production and separation of carboxylic acids for biorefifinery applications. Fermentation 3:22–47

    Article  Google Scholar 

  • Nguyen TT, Lama S, Ainala SK, Sankaranarayanan M, Chauhan AS, Kim JR, Park S (2021) Development of Pseudomonas asiatica as a host for the production of 3-hydroxypropionic acid from glycerol. Biores Technol 329:124867

    Article  Google Scholar 

  • Nguyen-Vo TP, Ko S, Ryu H, Kim JR, Kim D, Park S (2020) Systems evaluation reveals novel transporter YohJK renders 3-hydroxypropionate tolerance in Escherichia coli. Sci Rep 10:19064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen-Vo TP, Liang YX, Sankaranarayanan M, Seol E, Chun AY, Ashok S, Chauhan AS, Kim JR, Park S (2019) Development of 3-hydroxypropionic-acid-tolerant strain of Escherichia coli W and role of minor global regulator yieP. Metab Eng 53:48–58

    Article  CAS  PubMed  Google Scholar 

  • Nouri H, Moghimi H, Marashi SA, Elahi E (2020) Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS ONE 9:e0240330

    Article  Google Scholar 

  • Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS (2015) Protein synthesis by ribosomes with tethered subunits. Nature 524:119–124

    Article  CAS  PubMed  Google Scholar 

  • Pisu D, Provvedi R, Espinosa DM, Payan JB, Boldrin F, Palu G, Hernandez-Pando R, Manganelli R (2017) The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. Antimicrob Agents Chemother 61:e01596

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj SM, Rathnasingh C, Jo JE, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  • Rathnasingh C, Raj SM, Jo JE, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104:729–739

    CAS  PubMed  Google Scholar 

  • Rathnasingh C, Raj SM, Lee YJ, Catherine C, Ashok S, Park SH (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640

    Article  CAS  PubMed  Google Scholar 

  • Ren YL, Meng DC, Wu LP, Chen JC, Wu Q, Chen GQ (2017) Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates. Microb Biotechnol 10:371–380

    Article  CAS  PubMed  Google Scholar 

  • Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA 113:2388–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabet-Azad R, Sardari RRR, Linares-Pastén JA, Hatti-Kaul R (2015) Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes. Biores Technol 180:214–221

    Article  CAS  Google Scholar 

  • Sachdeva G, Garg A, Godding D, Way JC, Silver PA (2014) In vivo colocalization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaranarayanan M, Ashok S, Park S (2014) Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli. J Ind Microbiol Biotechnol 41:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan M, Somasundar A, Seol E, Chauhan AS, Kwon S, Jung GY, Park S (2017) Production of 3-hydroxypropionic acid by balancing the pathway enzymes using synthetic cassette architecture. J Biotechnol 259:140–147

    Article  CAS  PubMed  Google Scholar 

  • Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA (2014) A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol 10:742–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Seok JY, Yang J, Choi SJ, Lim HG, Choi UG, Kim KJ, Park S, Yoo TH, Jung GY (2018) Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab Eng 47:113–120

    Article  CAS  PubMed  Google Scholar 

  • Soma Y, Fujiwara Y, Nakagawa T, Tsuruno K, Hanai T (2017) Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metab Eng 43:54–63

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim JW, Cho IJ, Lee SY (2016) Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Synth Biol 5:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Sriramulu DD, Liang MZ, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, Warren MJ, Prentice MB (2008) Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190:4559–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthers PF, Cameron DC (2005) Production of 3-hydroxypropionic acid in recombinant organisms. U. S. Patent Application, 6852517B1.

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarico TL, Dobrogosz WJ (1990) Purification and characterization of glycerol dehydratase from Lactobacillus reuteri. Appl Environ Microbiol 56:1195–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarico TL, Casas IA, Chung TC, Dobrogosz WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32:1854–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasava K, Liu RM, Garst A, Gill RT (2018) Combinatorial pathway engineering using type I-E CRISPR interference. Biotechnol Bioeng 115:1878–1883

    Article  CAS  PubMed  Google Scholar 

  • Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA (2012) Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 40:8773–8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H (2014) Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact 13:64–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi L, Wu LP, Meng DC, Chen JC, Chen GQ (2013) Biosynthesis and characterization of diblock copolymer of P(3-hydroxypropionate)-block-P(4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromol 14:862–870

    Article  CAS  Google Scholar 

  • Tsuruno K, Honjo H, Hanai T (2015) Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch. Microb Cell Fact 14:155–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang FL, Shi J, He DW, Tong B, Zhang C, Wen AJ, Zhang Y, Feng Y, Lin W (2020) Structural basis for transcription inhibition by E. coli SspA. Nucleic Acids Res 48:9931–9942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JX, Zhao P, Li Y, Xu LD, Tian PF (2018) Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact 17:56–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Sun T, Gao XY, Shi ML, Wu LN, Chen L, Zhang WW (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34:60–70

    Article  PubMed  Google Scholar 

  • Wang Y, Ling C, Chen Y, Jiang XR, Chen GQ (2019) Microbial engineering for easy downstream processing. Biotechnol Adv 37:107365

    Article  CAS  PubMed  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: Volume I-Results of screening for potential candidates from sugars and synthesis gas. Office of Scientific and Technical Information, 69

  • Yang YM, Chen WJ, Yang J, Zhou YM, Hu B, Zhang M, Zhu LP, Wang GY, Yang S (2017) Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Fact 16:179–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YP, Lin YH, Li LY, Linhardt RJ, Yan YJ (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  PubMed  Google Scholar 

  • Zarzycki J, Brecht V, Müller M, Fuchs G (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci USA 106:21317–21322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen L, Diao JJ, Song XY, Shi ML, Zhang WW (2020) Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol Biofuels 13:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XC, Guo YY, Liu X, Chen XG, Wu Q, Chen GQ (2018) Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli. Metab Eng 45:32–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Zabed HM, Yun JH, Zhang GY, Wang Y, Qi XH (2021) Notable improvement of 3-hydroxypropionic acid and 1,3-propanediol coproduction using modular coculture engineering and pathway rebalancing. ACS Sustain Chem Eng 9:4625–4637

    Article  CAS  Google Scholar 

  • Zhao L, Lin JP, Wang HL, Xie JL, Wei DZ (2015) Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans. Bioprocess Biosyst Eng 38:2487–2495

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Li QY, Tian PF, Tan TW (2021) Switching metabolic flux by engineering tryptophan operon-assisted CRISPR interference system in Klebsiella pneumoniae. Metab Eng 65:30–41

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Ma CL, Xu LD, Tian PF (2019) Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid. Appl Microbiol Biotechnol 103:4017–4031

    Article  PubMed  Google Scholar 

  • Zhao P, Ren MR, Ge XZ, Tian PF, Tan TW (2020) Development of orthogonal T7 expression system in Klebsiella pneumoniae. Biotechnol Bioeng 117:1–14

    Article  Google Scholar 

  • Zhao P, Wang WJ, Tian PF (2018) Development of cyclic AMP receptor protein-based artificial transcription factor for intensifying gene expression. Appl Microbiol Biotechnol 102:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Zhu JG, Ji XJ, Huang H, Du J, Li S, Ding YY (2009) Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy. Korean J Chem Eng 26:1679–1685

    Article  CAS  Google Scholar 

  • Zhu JW, Xie JL, Wei LJ, Lin JP, Zhao L, Wei DZ (2018) Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. Biores Technol 265:328–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from Hebei Project for the Development of Science and Technology Guided by Central Universities (206Z2902G) and National Key Research and Development Program of China (2018YFA0901800), National Natural Science Foundation of China (21476011) and National High Technology Research and Development Program (863 Program, 2015AA021003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Tian, P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 37, 117 (2021). https://doi.org/10.1007/s11274-021-03091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03091-6

Keywords

Navigation