Skip to main content
Log in

Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The toxic effects of 3-hydroxypropionic acid (3-HP) at high concentrations on cell growth and cellular metabolism are a great challenge to its commercial production. This study has examined and compared the toxic effects of 3-HP on cell growth with other similar weak acids, especially lactic acid, under various concentrations, temperatures and pH using Escherichia coli W as the test strain. 3-HP was approximately 4.4-times more toxic than lactic acid due to the 4.4-fold weaker acidity or 0.64 higher pKa value. The two acids presented no appreciable difference when the growth inhibition was correlated with the undissociated or protonated free acid concentration calculated by the Henderson-Hasselbalch equation. The growth inhibition by other small organic acids, such as acetic acid, pyruvic acid, propionic acid, 2-hydroxybutyric acid (2-HB) and 3-hydroxybutyric acid (3-HB), was also well correlated with their pKa values or protonated free acid concentrations. This study suggests that the growth inhibition by small weak acids is mainly caused by the socalled proton effect (rather than the anion effect), i.e., an increase in the intracellular proton concentration. An appropriate increase in the medium pH was suggested to alleviate the acid toxicity by reducing the free acid concentration in the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Royce, L. A., P. Liu, M. J. Stebbins, B. C. Hanson, and L. R. Jarboe (2013) The damaging effects of short chain fatty acids on Escherichia coli membrane. Appl. Microbiol. Biotechnol. 97: 8317–8327.

    Article  CAS  Google Scholar 

  2. Gokarn, R. R., O. V. Selifonova, H. J. Jessen, S. J. Gort, T. Selmer, and W. Buckel (2007) 3-Hydroxypropionic acid and other organic compounds. U.S. Patent 7,186–541.

    Google Scholar 

  3. Lipscomb, T. W., M. L. Lipscomb, R. T. Gill, and M. D. Lynch (2013) Metabolic engineering of recombinant E. coli for the production of 3-hydroxypropionate. 1st ed., pp. 185–200. In: R. Patnaik (ed.). Engineering Complex Phenotypes in Industrial Strains. Wiley, Hoboken, NJ, USA.

    Google Scholar 

  4. Arasu, M. V., V. Kumar, S. Ashok, H. Song, C. Rathnasingh, H. J. Lee, D. Seung, and S. Park (2011) Isolation and characterization of the new Klebsiella pneumonia J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation. Biotechnol. Bioproc. Eng. 16: 1134–1143.

    Article  CAS  Google Scholar 

  5. Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotech. Adv. 31: 945–961.

    Article  CAS  Google Scholar 

  6. Lee, P., S. M. Raj, S. Zhou, S. Ashok, S. Edwadraja, and S. Park (2014) 3-Hydroxyisobutyrate dehydrogenase-I from Pseudomonas denitrificans ATCC 13867 degrades 3-hydroxypropionic acid. Biotechnol. Bioproc. Eng. 19: 1–7.

    Article  CAS  Google Scholar 

  7. Roe, A. J., C. O’Byrne, D. McLaggan, and I. R. Booth (2002) Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity. Micorobiol. 148: 2215–2222.

    CAS  Google Scholar 

  8. Russell, J. B. and F. Diez-Gonzalez (1998) The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39: 205–234.

    Article  CAS  Google Scholar 

  9. Van Maris, A. J., W. N. Konings, J. P. van Dijken, and J. T. Pronk (2004) Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metab. Eng. 6: 245–255.

    Article  Google Scholar 

  10. Warnecke, T. and R. T. Gill (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell. Fact. 4: 25.

    Article  Google Scholar 

  11. Mclaggan, D., J. Naprstek, E. T. Buurman, and W. Epstein (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. Biol. Chem. 269: 1911–1917.

    CAS  Google Scholar 

  12. Archer, C. T., J. F. Kim, H. Jeong, J. H. Park, C. E. Vickers, S. Y. Lee, and L. K. Nielsen (2011) The genome sequence of E. coli W (ATCC 9637): Comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genom. doi:10.1186/1471-2164-12-9.

    Google Scholar 

  13. Sankaranarayanan, M., S. Ashok, and S. Park (2014) Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli. J. Ind. Microbiol. Biotechnol. 41: 1039–1050.

    Article  CAS  Google Scholar 

  14. Wang, Y., T. Tian, J. Zhao, J. Wang, T. Yan, L. Xu, Z. Liu, E. Garza, A. Iverson, R. Manow, C. Finan, and S. Zhou, (2012) Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 34: 2069–2075.

    Article  CAS  Google Scholar 

  15. Foster, J. W. (2001) Acid stress responses of Salmonella and E. coli: Survival mechanisms, regulation, and implications for pathogenesis. J. Microbiol. 39: 89–94.

    CAS  Google Scholar 

  16. Rathnasingh, C., S. M. Raj, Y. Lee, C. Catherine, S. Ashok, and S. Park (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotech. 157: 633–640.

    Article  CAS  Google Scholar 

  17. Kanjee, U. and W. A. Houry (2013) Mechanisms of acid resistance in Escherichia coli. Annu. Rev. Micobiol. 67: 65–81.

    Article  CAS  Google Scholar 

  18. Marr, A. G. (1991) Growth rate of Escherichia coli. Microbiol. Rev. 55: 316–333.

    CAS  Google Scholar 

  19. Jin, D. J., C. Cagliero, and Y. N. Zhou (2012) Growth rate regulation in Escherichia coli. FEMS Microbiol. Rev. 36: 269–287.

    Article  CAS  Google Scholar 

  20. Arnold, C. N., J. McElhanon, A. Lee, R. Leonhart, and D. A. Siegele (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J. Bacteriol. 183: 2178–2186.

    Article  CAS  Google Scholar 

  21. Blankenhorn, D., J. Phillips, and J. L. Slonczewski (1999) Acidand base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol. 181: 2209–2216.

    CAS  Google Scholar 

  22. Warnecke, T. E., M. D. Lynch, A. Karimpour-Fard, M. L. Lipscomb, P. Handke, T. Mills, C. J. Ramey, T. Hoang, and R. T. Gill (2010) Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes. Metab. Eng. 12: 241–250.

    Article  CAS  Google Scholar 

  23. Han, M. and S. Y. Lee (2006) The Escherichia coli proteome: Past, present, and further prospects. Microbiol. Mol. Biol. Rev. 70: 362–439.

    Article  CAS  Google Scholar 

  24. Klungsoeyr, L. and A. Endresen (1964) Intracellular pH effect upon phosphoglucose isomerase in Escherichia coli. Biochim. Biophys. Acta 92: 378–387.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, A.Y., Yunxiao, L., Ashok, S. et al. Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnol Bioproc E 19, 858–865 (2014). https://doi.org/10.1007/s12257-014-0420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0420-y

Keywords

Navigation