Skip to main content
Log in

Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The industrially important species of corynebacteria viz. Corynebacterium acetoacidophilum appear to be alternative hosts for recombinant protein production; despite many efforts, a strong promoter-based system in corynebacteria has not been established so far. Described here is a T7 promoter-based expression system which was functional in both gram-positive C. acetoacidophilum and gram-negative Escherichia coli in an external inducer independent manner. This is the very first report of a T7 expression system for Corynebacterium sp. Also, it is a useful addition in the existing T7 expression systems of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archer JA, Sinskey AJ (1993) The DNA sequence and minimal replicon of the Corynebacterium glutamicum plasmid pSR1: evidence of a common ancestry with plasmids from C. diphtheriae. J Gen Microbiol 139(8):1753–1759

    Article  PubMed  CAS  Google Scholar 

  • Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ (1994) Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl Environ Microbiol 60(5):1641–1645

    PubMed  CAS  Google Scholar 

  • Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 61:1610–1613

    PubMed  CAS  Google Scholar 

  • Brabetz W, Liebl W, Schleifer KH (1993) Lactose permease of Escherichia coli catalyzes active β-galactoside transport in a gram-positive bacterium. J Bacteriol 175(22):7488–7491

    PubMed  CAS  Google Scholar 

  • Chao YP, Chiang CJ, Hung WB (2002) Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol Prog 18(2):394–400

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69(8):2110–2114

    Article  PubMed  CAS  Google Scholar 

  • Crowe J, Döbeli H, Gentz R, Hochuli E, Stüber D, Henco K (1994) 6xHis–Ni–NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol 31:371–387

    PubMed  CAS  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3014

    Article  PubMed  CAS  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J Bacteriol 110(3):219–226

    CAS  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    Article  PubMed  CAS  Google Scholar 

  • Deb JK, Malik S, Ghosh VK, Mathai S, Sethi R (1990) Intergeneric protoplast fusion between xylanase producing Bacillus subtilis LYT and Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 59(3):287–292

    Article  PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez C, Cadenas RF, Noirot-Gros MF, Martin JF, Gil JA (1994) Characterization of a region of plasmid pBL1 of Brevibacterium lactofermentum involved in replication via the rolling circle model. J Bacteriol 176(11):3154–3161

    PubMed  CAS  Google Scholar 

  • Garrido T, Sanchez M, Palacios P, Aldea M, Vicente M (1993) Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J 12(10):3957–3965

    PubMed  CAS  Google Scholar 

  • Itaya H, Kikuchi Y (2008) Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol 78(4):621–625

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Karan G, Deb JK (2005) Purification of streptomycin adenylyltransferase from a recombinant Escherichia coli. Protein Expr Purif 40(1):86–90

    Article  PubMed  CAS  Google Scholar 

  • Karan G (2000) Characterization of streptomycin resistant mutant of Corynebacterium acetoacidophilum ATCC 21476. Ph.D. dissertation, Indian Institute of Technology Delhi, India

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75(11):3419–3429

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the co-domain by a co-secreted subtilisin-like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–366

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Date M, Itaya H, Matsui K,Wu L (2006) Functional analysis of twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192

  • Kimura E (2003) Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 79:37–57

    PubMed  CAS  Google Scholar 

  • Kiran M, Maloney E, Lofton H, Chauhan A, Jensen R, Dziedzic R, Madiraju M, Rajagopalan M (2009) Mycobacterium tuberculosis ftsZ expression and minimal promoter activity. Tuberculosis (Edinb) 89(Suppl 1):S60–S64

    Article  Google Scholar 

  • Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    Article  PubMed  CAS  Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 12:75–94

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Letek M, Ordóñez E, Fiuza M, Honrubia-Marcos P, Vaquera J, Gil JA, Castro D, Mateos LM (2007) Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ. Int Microbiol 10(4):271–282

    PubMed  CAS  Google Scholar 

  • Liebl W, Sinskey AJ, Schleifer K (1992) Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol 174:1854–1861

    PubMed  CAS  Google Scholar 

  • Lutkenhaus J, Addinall SG (1997) Bacterial cell division and the Z ring. Annu Rev Biochem 66:93–116

    Article  PubMed  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538

    PubMed  CAS  Google Scholar 

  • Mukherjee KJ, Deb JK, Ramachandran KB (1990) Construction of vector for Brevibacterium lactofermentum and study of its stability in continuous culture. J Biotechnol 16:109–122

    Article  PubMed  CAS  Google Scholar 

  • Ozaki A, Katsumata R, Oka T, Furuya A (1984) Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol Gen Genet 196:175–178

    Article  PubMed  CAS  Google Scholar 

  • Paradis FW, Warren RAJ, Kilburn DG, Miller RC (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61:199–206

    Article  PubMed  CAS  Google Scholar 

  • Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104(1–3):311–323

    Article  PubMed  Google Scholar 

  • Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  PubMed  Google Scholar 

  • Pérola OM, André ML, Priscila GM, Carlota RY, Thereza CVP, Adalberto P Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharmaceut Sci 10(3):388–404

    Google Scholar 

  • Rose RE (1988) The nucleotide sequence of pACYC184. Nucleic Acids Res 16(1):355

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santamaria RI, Gil JA, Mesas JM, Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246

    CAS  Google Scholar 

  • Smith MD, Flickinger JL, Lineberger DW, Schmidt B (1986) Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl Environ Microbiol 51(3):634–639

    PubMed  CAS  Google Scholar 

  • Srivastava P, Deb JK (2002) Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 212(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  PubMed  CAS  Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • Walia RW, Deb JK, Mukherjee KJ (2007) Development of expression vectors for Escherichia coli based on the pCR2 replicon. Microb Cell Fact 10:6–14

    Google Scholar 

  • Weart RB, Levin AP (2003) Growth rate-dependent regulation of medial ftsZ ring formation. J Bacteriol 185:2826–2834

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T (2012) Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl Environ Microbiol 78(16):5831–5838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial and other supports given by the Indian Institute of Technology Delhi and Ministry of Drinking Water and Sanitation, GOI. MJE was supported by fellowships from the Department of Biotechnology, India as Junior Research Fellowship (DBT–JRF) and Indian Institute of Technology Delhi as Teaching Assistantship.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Prasad Agarwal.

Additional information

Jahar Kanti Deb is deceased.

Electronic supplementary material

Below is the link to the electronic supplementary materials.

ESM 1

(PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Equbal, M.J., Srivastava, P., Agarwal, G.P. et al. Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter. Appl Microbiol Biotechnol 97, 7755–7766 (2013). https://doi.org/10.1007/s00253-013-4900-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4900-3

Keywords

Navigation