Skip to main content
Log in

Identification and functional characterization of ten AP2/ERF genes in potato

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Ethylene-responsive element-binding factors (ERF) constitute one of the largest transcription factor families in plants. In this study, we describe the cloning and the characterization of ten cDNAs encoding ERF factors from potato. The alignment of their AP2/ERF (Apetala2/ethylene-responsive factor) domain led to the identification of six StERFs (Solanum tuberosum ERFs) and four StDREBs (dehydration responsive element binding). The phylogeny and the sequence characterization allowed the classification of these StERFs into five ERF families. Expression analysis by semi-quantitative RT-PCR of these genes revealed that most of them are induced by hormone treatment such as abscisic acid, ethephon, jasmonic acid and salicylic acid. However, salt stress induced the expression of all StDREB but only three StERF genes. These results suggest that these transcription factors are involved in salt stress response. The StDREB1 and StDREB2 genes showed strong increase in expression in response to drought stress. In an attempt to improve drought tolerance in potato, we overexpressed StDREB1 and StDREB2 in transgenic potato plants (S. tuberosum L. Group Tuberosum) cv. Belle de Fontenay (BF15) and Spunta, respectively. The level of drought tolerance of these transgenic lines was significantly greater than that of wild-type control plants as measured by relative water content H2O2 content, free proline and total soluble sugars. The results suggest that the StDREB1 and StDREB2 as AP2/ERF transcription factors may play dual roles in response to drought stress in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Behnam B, Kikuchi K, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnol 23:169–177

    Article  CAS  Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2007) Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Pirrello J, Ben Amor H, Hammami A, Charfeddine M, Dhieb A et al (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A et al (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Bio 54(3):803–817

    Article  CAS  Google Scholar 

  • Bouaziz D, Jbir R, Charfeddine S, Saidi MN, Gargouri-Bouzid R (2015) The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult 121:237–248

    Article  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camire ME, Kubow S, Donnelly DJ (2009) Potatoes and human health. Crit Rev Food Sci Nutr 49:823–840

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Song F, Goodman RM, Zheng Z (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Celebi-Toprak F, Behnam B, Serrano G, Kasuga M, Yamaguchi-Shinozaki K, Naka H, Watanabe JA, Yamanaka S, Watanabe KN (2005) Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by the DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breed Sci 55:31–319

    Article  Google Scholar 

  • Charfeddine M, Bouaziz D, Charfeddine S, Hammami A, Nouri-Ellouz O, Gargouri Bouzid R (2015a) Overexpression of dehydration responsive element binding 1 protein (DREB1) in transgenic Solanum tuberosum enhances tolerance to biotic stress. Plant Biotechnol Rep 9:79–88

    Article  Google Scholar 

  • Charfeddine M, Saϊdi MN, Charfeddine S, Hammami A, Gargouri Bouzid R (2015b) Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.). Mol Biotechnol 57:348–358

    Article  CAS  PubMed  Google Scholar 

  • Chuang HW, Harnrak A, Chen YC, Hsu CM (2010) A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochem Biophys Res Commun 402:414–420

    Article  CAS  PubMed  Google Scholar 

  • Djébali N, Belhassen T (2010) Field study of the relative susceptibility of eleven potato (Solanum tuberosum L.) varieties and the efficacy of two fungicides against Rhizoctonia solani attack. Crop Prot 29:998–1002

    Article  CAS  Google Scholar 

  • Dong CJ, Liu JY (2010) The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt and cold responsive gene expression. The Plant J. 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang YJ, You J, Xie KB, Xie WB, Xiong LZ (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Proteins identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Humana Press, New York, pp 571–607

    Book  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethyleneresponsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha N, Rajesh MK, Narayanan NK (2012) Genome-wide analysis of putative ERF and DREB gene families in Indica Rice (O. sativa L. subsp. Indica). Int J Mach Learn Comput 2:188

    Google Scholar 

  • Hernandez JA, Ferrer M, Jiménez A, Ros-Barcelo A, Sevilla F (2001) Antioxidant systems and O−2/H2O2 production with NaCl-induced necrotic lesions in minor veins. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • HongBo S, ZongSuo L, MingAn S (2006) Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces 47:132–139

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B, Jin L, Liu J (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China Ser C 50:7–14

    Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jadhao KR, Samal KC, Pradhan SK, Rout GR (2014) Studies on molecular characterization of DREB gene in Indica Rice (Oryza sativa L.). Hered Genet 3:133

    Google Scholar 

  • Jin LG, Liu JY (2008) Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton. Plant Physiol Biochem 46:46–53

    Article  CAS  PubMed  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  CAS  PubMed  Google Scholar 

  • Kizis D, Lumbreras V, Pagès M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A (ed) Abiotic stress/Book2. INTECH Open Access Publishers, Rijeka. ISBN 979-953-307-195-3

    Google Scholar 

  • Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 9:e113092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M et al (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS One 7(8):e42411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HE, Shin D, Park SR, Han SE, Jeong MJ, Kwon TR, Lee SK, Park SC, Yi BY, Kwon HB, Byun MO (2007) Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochem Biophys Res Commun 353:863–868

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Choi DS, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409–424

    Article  CAS  PubMed  Google Scholar 

  • Li CW, Su RC, Cheng CP, Sanjaya You SJ, Hsieh TH, Chao TC, Chan MT (2011) Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156:213–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JW, Wang B, Song XM, Wang RR, Chen L, Zhang H et al (2013) Potato leafroll virus (PLRV) and potato virus Y (PVY) influence vegetative growth, physiological metabolism, and microtuber production of in vitro grown shoots of potato (Solanum tuberosum L.). Plant Cell Tissue Organ Cult 114:313–324

    Article  CAS  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1:42–57

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Zhao TJ, Liu JM, Liu WQ, Liu Q, Yan YB et al (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett 580:1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR (2011) The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. PLoS One 6:e26801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nadarajah K, Omar NS, Thing TY (2014) Molecular characterization of a WRKY gene from Oryza sativa indica cultivar UKMRC9. POJ 7:63–71

    CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006a) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006b) Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119:407–413

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Helentjaris T, Bate NJ (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14:2565–2575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nouri-Ellouz O, Gargouri-Bouzid R, Sihachakr D, Triki MA, Ducreux G, Drira N, Lakhoua L (2006) Production of potato intraspecific somatic hybrids with improved tolerance to PVY and Pythium aphanidermatum. J Plant Physiol 163:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omidvar V, Abdullah SNA, Ho CL, Mahmood M (2013) Isolation and characterization of an ethylene-responsive element binding protein (EgEREBP) from oil palm (Elaeis guineensis). Aust J Crop Sci 7(2):219–226

    CAS  Google Scholar 

  • Oñate Sánchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defence. Plant Physiol 143:400–409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Over-expression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng X, Zhang L, Zhang L, Liu Z, Cheng L, Yang Y, Shen S, Chen S, Liu G (2012) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Cult 113:245–256

    Article  CAS  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Park EJ, Hayes PM, Chen THH (2007) Ectopic overexpression of AtCBF1 in potato enhances freezing tolerance in: cold hardiness in plants: molecular genetics. Plant Biotechnol J 5:676

    Article  CAS  Google Scholar 

  • Pirrello J, Prasad BN, Zhang W, Chen K, Mila I, Zouine M, Latche A, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12:190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    Article  CAS  Google Scholar 

  • Saeed AI, Hagabati NK, Braisted JC, Liang W, Sharov V, Howe EA et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherraf I, Tizroutine S, Chaput MH, Allot M, Mussio I, Sihachaker D, Rossignol L, Ducreux G (1994) Production and characterization of intergeneric somatic hybrids through protoplast electrofusion between potato (Solanum tuberosum L.) and Lycopersicon pennelli. Plant Cell Tissue Organ Cult 37:137–144

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Yu JP, Chen F, Zhao TJ, Fang XH, Li YQ et al (2008) TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem 283:6261–6271

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Oshumi C, Luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular revolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche A, Pech JC, Bouzayen M (2003) New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett 550:149–154

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskiiis involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28:664–675

    Article  CAS  Google Scholar 

  • Watanabe KN, Kikuchi A, Shimazaki T, Asahina M (2011) Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Res 54:319–324

    Article  CAS  Google Scholar 

  • Wei G, Pan Y, Lei J, Zhu YX (2005) Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J Biochem Mol Biol 38:440–446

    Article  CAS  PubMed  Google Scholar 

  • Weisz R, Kaminski J, Smilowitz Z (1994) Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. Am Potato J 71:829–840

    Article  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Article  CAS  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF TRANSCRIPTION FACTOR FAMILY IN CROP IMPROVEMENT. J Integr Plant Biol 53:570–585

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Li F, Ling L, Liu A (2013) Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genomics 14:785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or highsalt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang GY, Chen M, Chen XP, Xu ZS, Guan S, Li LC, Li AL, Guo JM, Mao L, Ma YZ (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao MG, Tian QT, Zhang WH (2007) Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou D, Kalaitzis P, Mattoo AK, Tucker ML (1996) The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol Biol 30:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Xiong AS, Peng RH, Gao F, Zhu B, Zhang J, Fu XY, Jin XF, Chen JM, Zhang Z et al (2010) Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2/ERF family genes. Mol Biol Rep 37(5):2485–2492

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011a) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38:745–753

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Yao Q-H, Xiong A-S, Zhang J (2011b) Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus × domestica Borkh). Plant Mol Biol Rep 29:209–216

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Tunisian Ministry of High Education and Scientific Research. The authors are grateful to Dr. Anne-Lise Haenni from the Institute Jacques Monod (France) for reading and improving the manuscript and to Mofida Bouaziz-Kanoun from the “Institut Supérieur d’Administration des Affaires de Sfax” (Tunisia) for her kind help with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donia Bouaziz.

Additional information

Donia Bouaziz and Mariam Charfeddine contributed equally in this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaziz, D., Charfeddine, M., Jbir, R. et al. Identification and functional characterization of ten AP2/ERF genes in potato. Plant Cell Tiss Organ Cult 123, 155–172 (2015). https://doi.org/10.1007/s11240-015-0823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0823-2

Keywords

Navigation