Skip to main content
Log in

The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

S-Adenosyl-methionine decarboxylase (SAMDC) and dehydration responsive element-binding proteins (DREBs) can improve plant resistance to abiotic stresses. These proteins have been extensively studied, but the mechanism for transcriptional regulation of SAMDC remains unclear. In this paper, the LcSAMDC2 gene and its promoter were isolated from Leymus chinensis. Two DRE cis-elements were identified from the promoter of LcSAMDC2 and shown to bind with LcDREB2. Subcellular localization and yeast one-hybrid assay revealed that LcDREB2 is a transcription factor. An electrophoretic mobility shift assay (EMSA) showed that LcDREB2 can bind to the LcSAMDC2 promoter probe containing a DRE element. Over-expression of LcDREB2 in L. chinensis callus increased expression of LcSAMDC2. Co-expression of LcDREB2 and the promoter of LcSAMDC2 fused with GUS in tobacco activated GUS activity. These results indicate that LcSAMDC2 is the downstream gene of LcDREB2. In addition, transgenic expression of LcDREB2 and LcSAMDC2 in Arabidopsis can improve the salt stress tolerance of transgenic lines. These results indicate that LcDREB2 cooperating with LcSAMDC2 contributes to resistance to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

MeJA:

Jasmonic acid methyl ester

DRE:

Dehydration responsive element

Spd:

Spermidine

Spm:

Spermine

SAMDC:

S-adenosylmethionine decarboxylase

EMSA:

Electrophoretic mobility shift assay

References

  • Abdel Hamid AK, Mamdouh SS, Mamdouh MN et al (2011) A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell, Tissue Organ Cult 106:191–206

    Article  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Alvarez I, Tomaro ML, Benavides MP (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tiss Organ Cult 74:51–59

    Article  CAS  Google Scholar 

  • Dresselhaus T, Barcelo P, Hagel C, Lorz H, Humbeck K (1996) Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated. Plant Mol Biol 30:1021–1033

    Article  PubMed  CAS  Google Scholar 

  • Ge CM, Cui X, Wang YH, Hu YX, Fu ZM, Zhang DF, Cheng ZK, Li JY (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa E, Shimada A (1994) The photoresponse of S-adenosylmethionine decarboxylase activity in leaves of Pharbitis nil. Plant Cell Physiol 35:505–508

    CAS  Google Scholar 

  • Hirayama K, Shinozaki K (2007) Perception and transduction of abscisic acid signals, keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Hu WW, Gong H, Pua EC (2005) The pivotal roles of plant S-adenosylmethionine decarboxylase untranslated leader sequence in regulation of gene expression at the transcriptional and post-transcriptional levels. Plant Physiol 138:276–286

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Su Q, Zu Y, Liu J (2010) Co-expression of genes related to glycine betaine biosynthesis from Salicornia europaea increase salt tolerance of transgenic tobacco. Chin Agric Sci Bull 26:55–59

    Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+-pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 108:63–71

    Article  CAS  Google Scholar 

  • Huang B, Jin LG, Liu JY (2008) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol 165:214–223

    Article  PubMed  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX et al (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kusano TT, Berberich C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Liu ZP, Chen ZY, Pan J, Li XF, Su M, Wang LJ, Li HJ, Liu GS (2008) Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phylogenet Evol 46:278–289

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Mehtal RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  Google Scholar 

  • Pal Bais H, Ravishankar G (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  Google Scholar 

  • Peng XJ, Ma XY, Fan WH, Su M, Cheng LQ, Iftekhar A, Qi DM, Byung-Hyun L, Shen SH, Liu GS (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1–10

    Article  Google Scholar 

  • Petri C, Alburquerque N, Pérez-Tornero O, Burgos L (2005) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue Organ Cult 82:105–111

    Article  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Richard W, Alexandra C, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  Google Scholar 

  • Roy M, Wu R (2002) Over-expression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 5:987–992

    Article  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophy Res Co 290:998–1009

    Article  CAS  Google Scholar 

  • Satoko M, Junya M, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196

    Article  Google Scholar 

  • Sun Y, Luo H, Li Y, Sun C, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics 12:533

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tian AG, Zhao JY, Zhang JS, Gai JY, Chen SY (2004) Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. Theore Appl Genet 108:842–850

    Article  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Wang LJ, Li XF, Chen SY, Liu GS (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31:313–319

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Guo JS, Feng ZH, Cui XH, Zhu J (2012) Molecular characterization of a novel AP2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell Tissue Organ Cult 10:423–433

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (30970291) and the National Basic Research Program of China (“973”, 2007CB108905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangyan Chen or Gongshe Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2012_264_MOESM1_ESM.tif

The induction, transformation and identification of L. chinensis callus. A Callus induction of L. chinensis. B Co-cultivation of EHA105 (containing LcDREB2) and callus of L. chinensis. C Selection of positive transformed callus by Hygromycin B. D Untranaformed allus after GUS staining. E The positive transformed callus comfirmed by GUS staining. F Enlarged of E. 1 (TIFF 11590 kb)

Supplementary material 2 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Zhang, L., Zhang, L. et al. The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis . Plant Cell Tiss Organ Cult 113, 245–256 (2013). https://doi.org/10.1007/s11240-012-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0264-0

Keywords

Navigation