Skip to main content
Log in

Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

Numerous studies have demonstrated that physiological responses of many crops to the fraction of extractable soil water conforms to a generalizable pattern. This suggests that differences among crops in their drought tolerance are largely due to differences in the total amount of transpirable water the crop can extract. Potato is frequently assumed to be more drought sensitive than other agronomic crops due, at least in part, to a shallow root system. In the research reported here, potato leaf growth and transpiration response to water deficits were determined as a function of fraction transpirable soil water (FTSW). Transpiration was unaffected by water stress until a critical FTSW was achieved when 64% to 80% of the extractable soil water was depleted depending on the cultivar. This was similar to the response reported for 8 other agronomic crops. In terms of transpiration, potato hypersensitivity to drought stress appears to be due to less effective soil water extraction. Leaf growth, however, showed a unique response to soil water deficits. Leaf growth began to decline when 40% of the extractable soil water was depleted. The associated critical FTSW was higher than any previously reported for all other crops. These data indicate that in addition to extracting less soil water, an additional physiological process related to leaf expansion must be contributing to the potato’s hypersensitivity to drought.

Compendio

Numerosos estudios han demostrado que las respuestas fisiológicas de muchos cultivos a la fracción extraíble de agua del suelo se comporta de una manera posible de generalizarse. Esto sugiere que las diferencias entre sus tolerancias a la sequía son debidas considerablemente a las diferencias en la cantidad total de agua de transpiración que el cultivo puede extraer. Se considera frecuentemente que la papa es más sensible a la sequía que otros cultivos debido, al menos en parte, a un sistema radicular superficial. En la investigación sobre la que aquí se informa, se determinaron las respuestas del crecimiento de las hojas y de la transpiración a los déficits de agua, como una función de la fracción transpirable del agua del suelo (FTSW). La transpiración no fue afectada por el estrés al agua hasta que era alcanzada una FTSW crítica, cuando se consumía del 64% al 80% del agua extraíble del suelo, dependiendo del cultivar. Esto fue similar a la respuesta reportada para otros ocho cultivos. En términos de transpiración, la hipersensibilidad de la papa al estrés a la sequía parece deberse a una extracción menos efectiva del agua del suelo. El crecimiento de las hojas, sin embargo, mostró una respuesta poco común a los déficits de agua en el suelo. El crecimiento de las hojas empezó a declinar cuando se consumió el 40% del agua extraíble del suelo. La FTSW crítica asociada fue mayor que en cualquier otro informe anterior sobre todos los otros cultivos. Esta información indica que además de extraer menos agua del suelo, un proceso fisiológico adicional relacionado a la expansión foliar debe estar contribuyendo a la hipersensibilidad de la papa a la sequía.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Burrows, F.J. 1969. The diffusive conductivity of sugar beet and potato leaves. Agric Meteorology 6:211–226.

    Article  Google Scholar 

  2. Corey, A.T. and G.R. Blake. 1953. Moisture available to various crops in some New Jersey Soils. Soil Sci Soc Am Proc 17:314–317.

    Article  Google Scholar 

  3. Durrant, K.M.J., B.J.G. Love, A.B. Messern and A.P. Draycott. 1973. Growth of crop roots in relation to soil moisture extraction. Ann Appl Biol 74:387–394.

    Article  Google Scholar 

  4. Epstein, E. and W.J. Grant. 1973. Water stress relations of the potato plant under field conditions. Agron J 65:400–404.

    Article  Google Scholar 

  5. Farris, N.F. 1934. Root habits of certain crop plants as observed in the humid soils of New Jersey. Soil Sci 38:87–111.

    Article  CAS  Google Scholar 

  6. Fulton, J.M. 1970. Relationship of root extension to the soil moisture level required for maximum yield of potatoes, tomatoes and corn. Can J Soil Sci 50:92–94.

    Article  Google Scholar 

  7. Gandar, P.W. and C.B. Tanner. 1976. Leaf growth, tuber growth and water potential in potatoes. Crop Sci 16:534–538.

    Article  Google Scholar 

  8. Harris, P.M. 1978. Water.In: The potato crop the scientific basis for improvement. P.M. Harris (ed.). Chapman Hall. London.

    Google Scholar 

  9. Jefferies, R.A., 1989. Water-stress and leaf growth in field-grown crops of potato (Solanum tuberosum L.). J Exp Bot 40:1375–1381.

    Article  Google Scholar 

  10. Jefferies, R.A. and D.K.L. Mackerron. 1989. Radiation interception and growth of irrigated and droughted potato (Solanum tuberosum). Field Crops Research 22:101–112.

    Article  Google Scholar 

  11. Leszynski, D.B. and C.B. Tanner. 1976. Seasonal variation of root distribution of irrigated, field-grown russet burbank potato. Am Potato J 53:69–78.

    Google Scholar 

  12. Penman, H.L. 1971. Irrigation at Woburn — VII.In: Rothamsted Experiment Station Report for 1970 Part 2. Rothamsted Experiment Station. Rothamsted.

    Google Scholar 

  13. Ritchie, J.T. 1973. Influence of soil water status and meteorological conditions on evaporation from a corn canopy. Agron J 65:893–897.

    Article  Google Scholar 

  14. Ritchie, J.T., E. Burnett & R.C. Henderson. 1972. Dryland evaporative flux in a subhumid climate. III. Soil water influence. Agron J 64:168–173.

    Article  Google Scholar 

  15. Ritchie, J.T. 1981. Water dynamics in the soil-plant-atmosphere system.In: Plant and Soil Volume 58. Martinus Nijhoff. The Hague. pp 81–96.

    Google Scholar 

  16. Rosenthal, W.D., F. Arkin, P.J. Shouse and W.R. Jordan. 1987. Water deficit effects on transpiration and leaf growth. Agron J 79:1019–1026.

    Article  Google Scholar 

  17. SAS Institute. 1990. SAS user’s guide: statistics. SAS Institute, Cary, NC.

    Google Scholar 

  18. Sinclair, T.R. 1986. Water and Nitrogen Limitations in Soybean Grain Production I. Model Development. Field Crops Research, 15:125–141.

    Article  Google Scholar 

  19. Sinclair, T.R. & M.M. Ludlow. 1986. Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13: 329–341.

    Article  Google Scholar 

  20. Sinclair, T.R. & R.C. Muchow, J.M. Bennet & L.C. Hammond. 1987. Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soybean. Agron J 79:989–991.

    Article  Google Scholar 

  21. Van Bavel, C.H.M. 1967. Changes in canopy resistance to water loss from alfalfa induced by soil water depletion. Agr Meteorol 4:165–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisz, R., Kaminski, J. & Smilowitz, Z. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops. American Potato Journal 71, 829–840 (1994). https://doi.org/10.1007/BF02849378

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02849378

Additional Keywords

Navigation