Skip to main content

Advertisement

Log in

An improved protocol for somatic embryogenesis and plant regeneration in macaw palm (Acrocomia aculeata) from mature zygotic embryos

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An improved protocol for plant regeneration via somatic embryogenesis was developed using mature macaw palm (Acrocomia aculeata) zygotic embryos as initial explant. For induction of the embryogenic callus (EC), two basic media (BM) were tested consisting of Murashige and Skoog and Eeuwens (Y3) salts with 30 g L−1 sucrose, 0.5 g L−1 glutamine and 2.5 g L−1 Phytagel. The 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6-trichloro-picolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) auxins were added to the culture media at concentrations of 0, 1.5 or 3.0 mg L−1. After 240 days, the embryogenic calli were transferred to the respective BM media with auxin concentrations reduced to 0.5 or 1.0 mg L−1 in order to differentiate the somatic embryos (SEs). Plant regeneration was performed on the BM media without growth regulators. Embryogenic calli were observed after 180 days of culture and in all treatments with auxin. The Y3 medium showed the best EC formation results (60.8 %). These calli showed yellowish coloration, compact consistency and nodular aspect. After 60 days in differentiation medium, SEs were verified in different stages of development. Histological analysis showed that the SEs were formed from a nodular EC. The SEs generally presented unicellular origin with suspensor formation, and at the end of development, bipolar embryos were observed. The plant regeneration frequency reached levels up to 31.9 % when using induction medium consisting of Y3 associated to 1.5 mg L−1 of 2,4-D and the subsequent auxin reduction to 0.5 mg L−1 in the differentiation stage. Regenerated plants showed normal development, with root and aerial part growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BM:

Basic media

Dicamba:

3,6-Dichloro-2-methoxybenzoic acid

EC:

Embryogenic callus

MS:

Murashige and Skoog (1962)

Picloram:

4-Amino-3,5,6-trichloro-picolinic acid

SE(s):

Somatic embryo(s)

Y3:

Eeuwens (1976)

ZE:

Zygotic embryos

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Abdullah R, Zainal A, Heng WY, Li CL, Beng YC, Phing LM, Sirajuddin SA, Ping WYS, Joseph JL, Jusoh SA, Muad MR, Huey YL (2005) Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electron J Biotechnol 8:25–34

    Article  CAS  Google Scholar 

  • Angelo PCS, Lopes R, Moraes LAC, Cunha RNV (2009) Embryogenic calli induced in interspecific (Elaeis guineensis × E. oleifera) hybrid zygotic embryos. Crop Breed Appl Biotechnol 9:274–277

    Article  Google Scholar 

  • Arkcoll D (1990) New crops from Brazil. In: Janick J, Simon EJ (eds) Advances in new crops. Timber Press, Portland, pp 367–371

    Google Scholar 

  • Arnold SV, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Balzon TA, Luis ZG, Scherwinski-Pereira JE (2013) New approaches to improve the efficiency of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) from mature zygotic embryos. In Vitro Cell Dev Biol Plant 49(1):41–50

    Article  CAS  Google Scholar 

  • Clement CR, Lleras Pérez E, Van Leeuwen J (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociencias 9(1–2):67–71

    Google Scholar 

  • De Almeida M, De Almeida CV, Graner EM, Brondani GE, Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1495–1515

    Article  PubMed  Google Scholar 

  • Dias AC, Guerra MP, Cordoba AS, Kemper EL (1994) Somatic embryogenesis and plant regeneration in the tissue culture of Genoma gamiova (Arecaceae). Acta Hortic 360:167–171

    Google Scholar 

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28

    Article  CAS  Google Scholar 

  • Eke CR, Akomeah P, Asemota O (2005) Somatic embryogenesis in date palm (Phoenix dactylifera L.) from apical meristem tissues from ‘zebia’ and ‘loko’ landraces. Afr J Biotechnol 4(3):244–246

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Fernando SC, Gamage CK (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198

    Article  CAS  PubMed  Google Scholar 

  • Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Hirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tissue Organ Cult 72:281–284

    Article  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotecnol 35(6):1039–1042

    Google Scholar 

  • Gueye B, Morcillo F, Collin M, Gargani D, Overvoorde P, Aberlenc-Bertossi F, Tranbarger TJ, Sane D, Tregear JW, Borgel A, Verdeil J (2009) Acquisition of callogenic capacity in date palm leaf tissues in response to 2,4-D treatment. Plant Cell Tissue Organ Cult 99(1):35–45

    Article  CAS  Google Scholar 

  • Heidstra R (2007) Asymmetric cell division in plant development. Prog Mol Subcell Biol 45:1–37

    Article  CAS  PubMed  Google Scholar 

  • Huong LTL, Baiocco M, Huy BP, Mezzetti B, Santilocchi R, Rosati P (1999) Somatic embryogenesis in Canary Island date palm. Plant Cell Tissue Organ Cult 56:1–7

    Article  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, New York

    Google Scholar 

  • Lorenzi GMAC (2006) Acrocomia aculeata (Lodd.) ex Mart. – Arecaceae: Bases para o extrativismo sustentável. Tese, Universidade Federal do Paraná

  • Motta PEF, Curi N, Oliveira Filho AT, Gomes JBV (2002) Ocorrência da macaúba em Minas Gerais: relação com atributos climáticos, pedagógicos e vegetacionais. Pesqui Agropecu Bras 37(7):1023–1031

    Article  Google Scholar 

  • Moura EF, Ventrella MC, Motoike SY, Sá Júnior AQ, Carvalho M, Manfi C (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tissue Organ Cult 95:175–184

    Article  Google Scholar 

  • Moura EF, Motoike SY, Ventrella MC, Sá Júnior AQ, Carvalho M (2009) Somatic embryogenesis in macaw palm (Acrocomia aculeata) from zygotic embryos. Sci Hortic 119:447–454

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • O’ Brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59(2):368–373

    Article  Google Scholar 

  • Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Organ Cult 97:71–79

    Article  Google Scholar 

  • Ribeiro LM, Oliveira DMT, Garcia QS (2012) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae) during in vitro germination. Trees 26:851–863

    Article  Google Scholar 

  • Scherwinski-Pereira JE, Guedes RS, Silva RA, Fermino PCPJR, Luis ZG, Freitas EO (2012) Somatic embryogenesis and plant regeneration in acaí palm (Euterpe oleracea). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-012-0115-z

    Google Scholar 

  • Shi X, Dai X, Liu G, Bao M (2009) Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Trees 23:1033–1042

    Article  Google Scholar 

  • Silva RC, Luis ZL, Scherwinski-Pereira JE (2012) Differential responses to somatic embryogenesis of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-012-0170-5

    Google Scholar 

  • Silva RC, Luis ZL, Scherwinski-Pereira JE (2013) The histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). Plant Growth Regul. doi:10.1007/s10725-013-9837-0

    Google Scholar 

  • Tassaro H (1996) Frutas no Brasil. São Paulo, Empresa das Artes, p 15

  • Te-Chato S, Hilae A (2007) High-frequency plant regeneration through secondary somatic embryogenesis in oil palm (Elaeis guineensis Jacq. Var. tenera). J Agric Technol 3(2):345–357

    Google Scholar 

  • Teixeira LC (2005) Potencialidades de oleaginosas para a produção de biodiesel. Inf Agropecu 26:18–27

    Google Scholar 

  • Teixeira JB, Sondahl MR, Kirby EG (1993) Somatic embryogenesis from immature zygotic embryos of oil palm. Plant Cell Tissue Organ Cult 34:227–233

    Article  Google Scholar 

  • Thuzar M, Vanavichit A, Tragoonrung S, Jantasuriyarat C (2011) Efficient and rapid plant regeneration of oil palm zygotic embryos cv. ‘Tenera’ through somatic embryogenesis. Acta Physiol Plant 33:123–128

    Google Scholar 

  • Tickel J (2000) From the fryer to the tank: the complete guide to using vegetable oil as an alternative fuel. http://www.chanvre-info.ch/info/en/The-Complete-Guide-to-Using.html. Accessed 24 July 2012

  • Troch V, Werbrouch S, Geelen D, Labeke MCV (2009) Optimization of horse chestnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tissue Organ Cult 98:115–123

    Article  CAS  Google Scholar 

  • Vargas J (2007) Vegetable oils as substitutes for diesel oil. Rev Polit Agríc 1:17–30

    Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep Grant No. 01.08.0597.01), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes/Embrapa 001-2011/Grant No. 39) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonny Everson Scherwinski-Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luis, Z.G., Scherwinski-Pereira, J.E. An improved protocol for somatic embryogenesis and plant regeneration in macaw palm (Acrocomia aculeata) from mature zygotic embryos. Plant Cell Tiss Organ Cult 118, 485–496 (2014). https://doi.org/10.1007/s11240-014-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0500-x

Keywords

Navigation