Skip to main content
Log in

Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.

Key message Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

MEP:

Multicellular embryogenic pathway

MS:

Murashige and Skoog (1962)

MSE:

Multicellular somatic embryos

NAA:

α-Naphthalene acetic acid

OP:

Organogenic pathway

PGR:

Plant growth regulator

PPCs:

Pre-procambial cells

SOP:

Secondary organogenesis pathway

TDZ:

Thidiazuron

USE:

Unicellular somatic embryos

References

  • Alemanno L, Ramos T, Gargadenec A, Andary C, Ferriere N (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann Bot 92(4):613–623. doi:10.1093/aob/mcg177

    Article  PubMed  CAS  Google Scholar 

  • Almeida M, Almeida CV (2006) Somatic embryogenesis and in vitro plant regeneration from pejibaye adult plant leaf primordial. Pesq Agropec Bras 41(9):1449–1452. doi:10.1590/S0100-204X2006000900015

    Article  Google Scholar 

  • Almeida M, Kerbauy GB (1996) Micropropagation of Bactris gasipaes (Palmae) trough flower bud culture. R Bras Fisiol Veg 8(3):215–217

    Google Scholar 

  • Bach A, Pawłowska B (2003) Somatic embryogenesis in Gentiana pneumonanthe L. Acta Biologica Cracoviensia 45(2):79–86

    Google Scholar 

  • Berger F, Haseloff J, Schiefelbein J, Dolan L (1998) Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr Biol 8(8):421–430. doi:10.1016/S0960-9822(98)70176-9

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Sachs T (2011) Plant Morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4(1):57–62. doi:10.1016/S1369-5266(00)00136-9

    Article  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  PubMed  CAS  Google Scholar 

  • Blervacq AS, Lucau-Danila A, Couillerot JP, Morcillo F, Aberlenc-Bertossi F, Hawkins S, Tranbarger TJ, Verdeil JL (2012) Stem cell-like cells and plant regeneration. In: Berhardt LV (ed) Advances in medicine and biology. vol 15 Nova Publishers, New York, 1–60. ISBN: 978-1-61122-467-2

  • Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-naphthalene acetic acid and 2,4-dichlorophenoxy acetic acid activate different pathways. Plant Physiol 137:939–948

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260. doi:10.1104/pp.103.027953

    Article  PubMed  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Santos M, Guerra MP (2004) Morphohistological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma 224(1/2):33–40. doi:10.1007/s00709-004-0055-5

    PubMed  CAS  Google Scholar 

  • Canhoto JM, Rama S, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol Plant 42(6):514–519. doi:10.1079/IVP2006819

    Article  CAS  Google Scholar 

  • Cedzich A, Stransky H, Schulz B, Frommer WB (2008) Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol 148(4):1857–1867. doi:10.1104/pp.108.128454

    Article  PubMed  CAS  Google Scholar 

  • Chhabra G, Chaudhary D, Varma M, Sainger M, Jaiwal PK (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14(4):347–353. doi:10.1007/s12298-008-0033-z

    Article  CAS  Google Scholar 

  • Constabel F, Miller RA, Gamborg OL (1971) Histological studies on embryos produced from cell cultures of Bromus inermis. Can J Bot 49(8):1415–1417. doi:10.1139/b71-198

    Article  Google Scholar 

  • Dettmer J, Elo A, Helariutta Y (2009) Hormone interactions during vascular development. Plant Mol Biol 69(4):347–360. doi:10.1007/s11103-008-9374-9

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Kleine-Vehn J, Friml J (2005) Cell polarity, auxin transport, and cytoskeleton-mediated division planes: who comes first? Protoplasma 226(1/2):67–73. doi:10.1007/s00709-005-0104-8

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433. doi:10.1016/S0092-8674(00)80115-4

    Article  PubMed  Google Scholar 

  • Dolan L (2006) Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. J Exp Bot 57(1):51–54. doi:10.1093/jxb/erj037

    Article  PubMed  CAS  Google Scholar 

  • Domínguez F, Moreno J, Cejudo FJ (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J Biol Chem 279(12):11530–11536. doi:10.1074/jbc.M308082200

    Article  PubMed  CAS  Google Scholar 

  • Donner TJ, Sher I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136(19):3235–3246. doi:10.1242/dev.037028

    Article  PubMed  CAS  Google Scholar 

  • Douglas JP, Matthews GJ (1964) Growth and development of carnation shoot tips in vitro. Bot Gaz 125(1):7–12

    Article  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Plant Biol 105(25):8790–8794. doi:10.1073/pnas.0712307105

    CAS  Google Scholar 

  • Eklund DM, Edqvist J (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1943) Origin and development of primary vascular tissues in plants. Bot Rev 9(3):125–206

    Article  Google Scholar 

  • Esau K (1960) Anatomy of seed plants. John Wiley, New York

    Google Scholar 

  • Fernando JA, Melo M, Soares MKM, Appezzato-da-Gloria B (2001) Anatomy of somatic embryogenesis in Carica papaya L. Braz Arch Biol Technol 44(3):247–255. doi:10.1590/S1516-89132001000300005

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113(24):4399–4411

    PubMed  CAS  Google Scholar 

  • Fisher DB (1968) Protein staining of ribonned epon section for light microscopy. Histochemie 16:92–96. doi:10.1007/BF00306214

    Article  PubMed  CAS  Google Scholar 

  • Fowler JE, Quatrano RS (1997) Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton an cell wall. Annu Rev Cell Dev Biol 13:697–743. doi:10.1146/annurev.cellbio.13.1.697

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5(5):379–391. doi:10.1038/nrm1364

    Article  PubMed  CAS  Google Scholar 

  • Geneve R, Kester S, Pomper K (2007) Autonomous shoot production in pawpaw (Aimina triloba (L.) Dunal) on plant growth regulator free media. Propag Ornam Plants 7(2):51–56

    Google Scholar 

  • Gill R, Gerrath JM, Saxena PK (1993) High-frequency direct somatic embryogenesis in thin layer cultures of hybrid seed geranium (Pelargonium × hortorum). Can J Bot 71(3):408–413. doi:10.1139/b93-045

    Article  Google Scholar 

  • Goh DKS, Bon MC, Aliotti F, Escoute J, Ferriere N, Monteuuis O (2001) In vitro somatic embryogenesis in two major rattan species: Calamus merrillii and Calamus subinermis. In Vitro Cell Dev Biol Plant 37(3):375–381. doi:10.1007/s11627-001-0066-2

    Article  Google Scholar 

  • Grafi G, Chalita-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation. Planta 233:433–438. doi:10.1007/s00425-011-1366-3

    Article  PubMed  CAS  Google Scholar 

  • Graner E (2009) Morphophysiological evaluations of the development of pejibaye microplants treated with bioregulators. Dissertation, University of São Paulo. http://www.teses.usp.br/teses/disponiveis/11/11144/tde-09092009-100448/. Accessed 26 Mar 2010

  • Gueye B, Saïd-Ahmed H, Morcillo F, Borgel A, Sané D, Hilbert J-L, Verdeil J-L, Blervacq A-S (2009) Callogenesis and rhizogenesis in date palm leaf segments: are there similarities between the two auxin-induced pathways? Plant Cell Tiss Organ Cult 98(1):47–58. doi:10.1007/s11240-009-9537-7

    Article  CAS  Google Scholar 

  • Hanower J, Hanower P (1984) Inhibition et stimulation en culture in vitro de l’embryogénèse des souches issues d’explant foliaires de palmier à l’huile. CR Acad Sci Paris 298:45–48

    CAS  Google Scholar 

  • Hausman JF (1993) Changes in peroxidase activity, auxin level and level and ethylene production during root formation by poplar shoots raised in vitro. Plant Growth Reg 13(3):263–268. doi:10.1007/BF00024847

    Article  CAS  Google Scholar 

  • Heidstra R (2007) Asymmetric cell division in plant development. Prog Mol Subcell Biol 45:1–37. doi:10.1007/978-3-540-69161-7_1

  • Hicks GS (1980) Patterns of organ development in plant tissue culture and the problem of organ determination. Bot Rev 46(1):1–23. doi:10.1007/BF02860865

    Article  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523. doi:10.1242/dev.020867

    Article  PubMed  CAS  Google Scholar 

  • Hu JB, Liu J, Yan HB, Xie CH (2005) Histological observations of morphogenesis in petiole derived callus of Amorphophallus rivieri Durieu in vitro. Plant Cell Rep 24(11):642–648. doi:10.1007/s00299-005-0002-8

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson MJ, Krishnaraj S, Saxena PK (1996) Morphological and physiological changes during thidiazuron-induced somatic embryogenesis in geranium (Pelargonium × hortorum Bailey) hypocotyl cultures. Int J Plant Sci 157(4):440–446

    Article  Google Scholar 

  • Jenik PD, Barton MK (2005) Surge and destroy: the role of auxin in plant embryogenesis. Development 132(16):3577–3585. doi:10.1242/dev.01952

    Article  PubMed  CAS  Google Scholar 

  • Joy RW, Yeung EC, Kong L, Thorpe TA (1991) Development of white spruce somatic embryos: I. storage product deposition. In Vitro Cell Dev Biol Plant 27(1):32–41. doi:10.1007/BF02632059

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Komatsu YH, Batagin-Piotto KD, Brondani GE, Gonçalves AN, Almeida M (2011) In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. J For Res 22(2):209–215. doi:10.1007/s11676-011-0152-1

    Article  CAS  Google Scholar 

  • Kouakou TH, Waffo TP, Kouadio YJ, Valls J, Richard T, Decendit A, Mérillon JM (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsutum L.). Plant Cell Tiss Org Cult 90(1):25–29. doi:10.1007/s11240-007-9243-2

    Article  CAS  Google Scholar 

  • Laxmi DV, Sharma HC, Kirti PB, Mohan ML (1999) Somatic embryogenesis in mango (Mangifera indica L.). Curr Sci 77(10):1355–1358

    CAS  Google Scholar 

  • MacArthur BD, Ma’ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10(10):672–681. doi:10.1038/nrm2766

    PubMed  CAS  Google Scholar 

  • Maheswaran G, Williams EG (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens and Medicago sativa and rapid clonal propagation of T. repens. Ann Bot 54(2):201–211

    Google Scholar 

  • Mauseth JF (2008) Botany, an introduction to plant biology, 4th edn. Jones and Bartlett Publishers, Massachusetts

    Google Scholar 

  • Mehta UJ, Sahasrabudhe N, Hazra S (2005) Thidiazuron-induced morphogenesis in tamarind seedlings. In Vitro Cell Dev Biol Plant 41(3):240–243. doi:10.1079/IVP2004611

    Article  CAS  Google Scholar 

  • Meins FJr (1989) Habituation: hereditable variation in the requirement of cultured plant cells for hormones. Annu Rev Genet 23:395–408. doi:10.1146/annurev.ge.23.120189.002143

    Article  PubMed  CAS  Google Scholar 

  • Meins FJr, Foster R (1986) Transdetermination of plant cells. Differentiation 30(3):188–189. doi:10.1111/j.1432-0436.1986.tb00779.x

    Article  PubMed  Google Scholar 

  • Meins F Jr, Seldran M (1994) Pseudodirected variation in the requirement of cultured plant cells for cell-division factors. Development 120(5):1163–1168

    Google Scholar 

  • Mok MC, Mok DWS, Turner JE, Mujer CV (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. HortScience 22(6):1194–1197

    CAS  Google Scholar 

  • Moura EF, Ventrella MC, Motoike SY, de Sa AQ, Carvalho M, Manfio CE (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tiss Organ Cult 95(2):175–184. doi:10.1007/s11240-008-9430-9

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34(4):267–275. doi:10.1007/BF02822732

    Article  CAS  Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125(2):615–626. doi:10.1104/pp.125.2.615

    Article  PubMed  CAS  Google Scholar 

  • Osborne DJ, McManus MT (2005) Hormones, signals and target cells in plant development. Cambridge University Press, New York

    Book  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni, WC (2011) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma Accessed 17 Sept 2011. doi:10.1007/s00709-011-0318-x

  • Pacheco G, Gagliardi RF, Carneiro LA, Callado CH, Valls JFM, Mansur E (2007) The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from sections Erectoides and Procumbentes. Plant Cell Tiss Organ Cult 88(2):121–126. doi:10.1007/s11240-006-9169-0

    Article  CAS  Google Scholar 

  • Papp B, Plath K (2011) Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 21(3):486–501. doi:10.1038/cr.2011.28

    Article  PubMed  CAS  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chriqui D, Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146(1):140–148. doi:10.1104/pp.107.107870

    Article  PubMed  CAS  Google Scholar 

  • Parrot WA, Merlke SA, Williams EG (1991) Somatic embryogenesis: potential for use in propagation and gene transfer systems. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB International, Wallingford, pp 158–200

    Google Scholar 

  • Petrášek J, Elčkner M, Morris DA, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate. Planta 216:302–308. doi:10.1007/s00425-002-0845-y

    Article  PubMed  CAS  Google Scholar 

  • Phillips GC (2004) In vitro morphogenesis in plants—recent advances. In Vitro Cell Dev Biol Plant 40(4):342–345. doi:10.1079/IVP2004555

    Article  CAS  Google Scholar 

  • Pinto DLP, Almeida AMR, Rêgo MM, Silva ML, Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passion fruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Organ Cult 107(3):521–530. doi:10.1007/s11240-011-0003-y

    Article  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot Oxford 59(3):435–444. doi:10.1093/jxb/erm258

    Article  CAS  Google Scholar 

  • Reis E, Batista MT, Canhoto JM (2008) Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg. Protoplasma 232(3/4):193–202. doi:10.1007/s00709-008-0290-2

    Article  PubMed  CAS  Google Scholar 

  • Risopatron JPM, Sun Y, Jones BJ (2010) The vascular cambium: molecular control of cellular structure. Protoplasma 247(3/4):145–161. doi:10.1007/s00709-010-0211-z

    Article  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:154–262

    Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, New York

    Book  Google Scholar 

  • Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41(6):649–656. doi:10.1093/pcp/41.6.649

    Article  PubMed  CAS  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Biotech Histochem 48(5):247–249. doi:10.3109/10520297309116632

    Article  CAS  Google Scholar 

  • Sawchuk MG, Donner T, Scarpella E (2008) Auxin transport-dependent, stage-specific dynamics of leaf vein formation. Plant Signal Behav 3(5):286–289

    Article  PubMed  Google Scholar 

  • Schnablová R, Synková H, Vicánková A, Burketová L, Eder J, Cvikrová M (2006) Transgenic ipt tobacco overproducing cytokinins over accumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44(10):526–534. doi:10.1016/j.plaphy.2006.09.004

    Article  PubMed  CAS  Google Scholar 

  • Schnittger A, Weinl C, Bouyer D, Schöbinger U, Hülskamp M (2003) Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15:303–315

    Article  PubMed  CAS  Google Scholar 

  • Scott I, Logan DC (2008) Mitochondria and cell death pathways in plants. Plant Signal Behav 3(7):475–477

    Article  PubMed  Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hort Rev 2:268–310. doi:10.1002/9781118060759.ch6

    CAS  Google Scholar 

  • Skoog F, Tsui C (1948) Formation of adventitious shoots and roots in tobacco. Am J Bot 35:782–787

    Article  CAS  Google Scholar 

  • Smet I, Beeckman T (2011) Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 12(3):177–188. doi:10.1038/nrm3064

    Article  PubMed  CAS  Google Scholar 

  • Smet I, Voß U, Jürgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11(10):1166–1173. doi:10.1038/ncb1009-1166

    Article  PubMed  CAS  Google Scholar 

  • Somleva MN, Schmidt EDL, Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19(7):718–726. doi:10.1007/s002999900169

    Article  CAS  Google Scholar 

  • Stein VC, Paiva R, Vargas DP, Soares OS, Alves E, Nogueira GF (2010) Ultrastructural calli analysis of Inga vera Willd subsp. Affinis (DC.) T.D. Penn. Rev Árvore 34(5):789–796. doi:10.1590/S0100-67622010000500004

    Article  Google Scholar 

  • Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100(4):699–709. doi:10.1093/aob/mcm153

    Article  PubMed  CAS  Google Scholar 

  • Steinmacher DA, Guerra MP, Saaresurminski K, Lieberei RA (2011) Temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475. doi:10.1093/aob/mcr033

    Article  PubMed  CAS  Google Scholar 

  • Sussex IM, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4(1):33–37. doi:10.1016/S1369-5266(00)00132-1

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabdopsis thaliana. Physiol Plantarum 123(2):130–138. doi:10.1111/j.1399-3054.2005.00475.x

    Article  CAS  Google Scholar 

  • ten Hove CA, Heidstra R (2008) Who begets whom? Plant cell fate determination by asymmetric cell division. Curr Opin Plant Biol 11(1):34–41. doi:10.1016/j.pbi.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  • Thompson DS (2008) Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function. Ann Bot 101(2):203–211. doi:10.1093/aob/mcm138

    Article  PubMed  CAS  Google Scholar 

  • Thorpe TA, Kumar PP (1993) Cellular control of morphogenesis. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer Academic, The Netherlands, pp 11–29

    Google Scholar 

  • Tucker MR, Hinze A, Tucker EJ, Takada S, Jürgens G, Laux T (2008) Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:2839–2843. doi:10.1242/dev.023648

    Article  PubMed  CAS  Google Scholar 

  • Vale FXR, Fernandes Filho EI, Liberato JR (2003) QUANT: a software plant disease severity assessment. In: proceedings of the 8th International Congress of Plant Pathology. Christchurch, 105

  • Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13(3/4):218–221. doi:10.1007/BF00239896

    CAS  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252. doi:10.1016/j.tplants.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  • Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron: substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99(4):1704–1707

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    PubMed  CAS  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclindependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49(3):387–398

    Article  PubMed  CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot 57(4):443–462

    Google Scholar 

  • Wilson PJ, Van Staden J (1990) Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting—a review. Ann Bot 66(4):479–490

    CAS  Google Scholar 

  • Yang SW, Jin E, Chung IK, Kim WT (2002) Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J 29:617–626

    Article  PubMed  CAS  Google Scholar 

  • Yeo UD, Han JY, Choi YE, Soh WY, Nakagawa N, Sakurai N (1999) Turnover of cell-wall polysaccharides during somatic embryogenesis and development of celery (Apium graveolens L.). J Plant Biol 42(1):8–15. doi:10.1007/BF03031141

    Article  CAS  Google Scholar 

  • Zhang K, Letham DS, John PCL (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200:2–12. doi:10.1007/BF00196642

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Wang H, Gilmer S, Whitwill S, Fowke LC (2003) Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta 216:604–613. doi:10.1007/s00425-002-0935-x

    PubMed  CAS  Google Scholar 

  • Zhuravlev YN, Omelko AM (2008) Plant morphogenesis in vitro. Russian J Plant Physiol 55(5):579–596. doi:10.1134/S1021443708050014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FINEP (Financiadora de Estudos e Projetos), Inaceres Agrícola, InVitroPalm (Consulting, Study and Biological Development Ltda), FAPESP (São Paulo Research Foundation, Brazil) and CAPES (Coordination for the Improvement of Higher Level, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilvano Ebling Brondani.

Additional information

Communicated by A. Feher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, M., de Almeida, C.V., Graner, E.M. et al. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31, 1495–1515 (2012). https://doi.org/10.1007/s00299-012-1264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1264-6

Keywords

Navigation