Skip to main content
Log in

Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Recalcitrance of most large-seeded legumes, such as peanut, to regeneration and genetic transformation has hampered studies on gene function and efforts for genetic improvement. Agrobacterium rhizogenes-mediated transformation provides a system for rapid and efficient transformation of plant tissues. In this study, embryonic axes along with cotyledons of peanut were injected with a suspension culture of A. rhizogenes using microliter syringes. The influence of several factors such as plant genotype, A. rhizogenes culture stage, co-culture period of A. rhizogenes, and acetosyringone concentration in the co-cultivation medium have been evaluated. It is found that A. rhizogenes-mediated transformation of peanut is genotype-independent. Up to 61% transformation was recorded when embryonic axes were co-cultivated with 5 × 107 A. rhizogenes cells from logarithmic phase for 2 days on co-culture medium containing 50 μmol l−1 acetosyringone. Composite plants with transgenic roots were harvested after 45 days of treatment. Furthermore, this method was applied to assess the insecticidal activity of a synthetic cry8Ea1 gene against Holotrichia parallela in transgenic roots of peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DIRC:

Days of induced roots emerging after co-cultivation

NC:

Non-transgenic control

References

  • Akasaka Y, Mii M, Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81:355–362

    Article  Google Scholar 

  • Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649

    Article  PubMed  CAS  Google Scholar 

  • Anwar N, Watanabe K, Watanabe J (2011) Transgenic sweet potato expressing mammalian cytochrome P450. Plant Cell Tiss Organ Cult 105:219–231

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2009) Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia. Biotechnol Lett 31:1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502

    Article  PubMed  CAS  Google Scholar 

  • Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774

    Article  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff H-J, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Liu HW, Lee KT, Yamakawa T (2007) High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum. Plant Cell Rep 26:29–37

    Article  PubMed  Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Deng XY, Faustinelli P, Ozias-Akins P (2008) Bcl-xl transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Rep 27:85–92

    Article  PubMed  CAS  Google Scholar 

  • Costa MS, Miguel Cl, Oliveira MM (2006) An improved selection strategy and the use of acetosyringone in shoot medium increase almond transformation efficiency by 100-fold. Plant Cell Tiss Organ Cult 85:205–209

    Article  Google Scholar 

  • Dutt M, Grosser J (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tiss Organ Cult 98:331–340

    Article  CAS  Google Scholar 

  • Enserink M (2008) The peanut butter debate. Science 322:36–38

    Article  PubMed  CAS  Google Scholar 

  • Farkya S, Bisaria VS (2008) Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (LYR2i) of Linum album. J Biosci Bioeng 105:140–146

    Article  PubMed  CAS  Google Scholar 

  • Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Cell Tiss Organ Cult 102:109–114

    Article  Google Scholar 

  • Gao N, Shen W, Cao Y, Su Y, Shi W (2009) Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell Tiss Org Cult 98:321–330

    Article  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Google Scholar 

  • Jha P, Shashi S, Rustagi A, Agnihotri P, Kulkarni V, Bhat V (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Cell Tiss Organ Cult 107:501–512

    Article  CAS  Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29:173–183

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Lee SY, Park SU (2008) Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 7:3788–3790

    CAS  Google Scholar 

  • Ko TS, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107(3):439–447

    Article  PubMed  CAS  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. PNAS 105:9823–9828

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C, Toth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T (2009) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. PNAS 107:2343–2348

    Article  Google Scholar 

  • Matand K, Prakash CS (2007) Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. J Biotechnol 130:202–207

    Article  PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJ (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. PNAS 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Ozawa K (2009) Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci 176:522–527

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  • Ream W (2009) Agrobacterium tumefaciens and A. Rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus. Micro Biotechnol 2:416–427

    Article  CAS  Google Scholar 

  • Rogers DJ, Ward AL, Wightman JA (2005) Damage potential of two scarab species on groundnut. Int J Pest Manag 51:305–312

    Article  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P (2006) Peanut (Arachis hypogaea L.). Methods Mol Biol 343:347–358

    PubMed  Google Scholar 

  • Shi H, Long Y, Sun T, Tsang E (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Cell Tiss Organ Cult 107:251–260

    Article  CAS  Google Scholar 

  • Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F (2009) Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 58:389–392

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Hazra S (2009) Somatic embryogenesis from the axillary meristems of peanut (Arachis hypogaea L.). Plant Biotechnol Rep 3:333–340

    Article  Google Scholar 

  • Sinharoy S, Saha S, Chaudhury SR, DasGupta M (2009) Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the aeschynomeneae tribe. Mol Plant Microbe Interact 22:132–142

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan T, Kumar K, Kirti P (2010) Establishment of efficient and rapid regeneration system for some diploid wild species of Arachis. Plant Cell Tiss Organ Cult 101:303–309

    Article  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  • USDA (2010) World agricultural production. U. S. Dep. Agric. Foreign Agric. Serv. Circ. WAP 10-10

  • Vargas Gil S, Haro R, Oddino C, Kearney M, Zuza M, Marinelli A, March GJ (2008) Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Protect 27:1–9

    Article  Google Scholar 

  • Vickers CE, Schenk PM, Li D, Mullineaux PM, Gresshoff PM (2007) pGFPGUSplus, a new binary vector for gene expression studies and optimising transformation systems in plants. Biotechnol Lett 29:1793–1796

    Article  PubMed  CAS  Google Scholar 

  • Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. Indica). J Plant Res 120:237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was sported by 973 Projects of China (2009CB118902) and National Science and Technology Major Project (2009ZX08009-030B). We thank the Australian Research Council for Centre of Excellence funding to PMG. PMG also is a Senior Professorial Fellow of the CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, L., Niu, L., Gresshoff, P.M. et al. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult 109, 491–500 (2012). https://doi.org/10.1007/s11240-012-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0113-1

Keywords

Navigation