Skip to main content
Log in

Regeneration of transformed plants from hairy roots of Plumbago indica

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Spontaneous shoot regeneration was observed from Agrobacterium rhizogenes-induced hairy roots of Plumbago indica when these were incubated in liquid MS medium for a period of 3 weeks under continuous light. Insertion of the rolB gene in putative transformed plants was confirmed by PCR and sequencing. Transformed plants grown for a period of 1 week on solid MS medium containing 0.5 mg l−1 6-benzyladenine and then transplanted to growth regulator-free medium showed better overall growth than control plants. Transformed plants had a higher root bio-biomass and an increased plumbagin content relative to non-transformed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

BA:

6-Benzyladenine

HPLC:

High performance liquid chromatography

IAA:

Indole acetic acid

References

  • Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Org Cult 77:89–101

    Article  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium mediated transformation of Brassica napus and B. oleracea. Nat Protoc 3(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Bhargava SK (1984) Effect of plumbagin on reproductive function of male dog. Ind J Exp Biol 22:153–156

    CAS  Google Scholar 

  • Bhattacharyya R, Ray A, Gangopadhyay M, Bhattacharya S (2007) In vitro conservation of Plumbago indica—a rare medicinal plant. Plant Cell Biotechnol Mol Biol 8:39–46

    CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medical plants into cultivation opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation. Plant Cell Rep 25:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Chetia S, Handique PJ (2000) A high frequency in vitro shoot multiplication of Plumbago indica—a rare medicinal plant. Curr Sci 78:1187–1189

    Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Muller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes of Agrobacterium rhizogenes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Sriskandarajah S, Muller R (2009) Transformation of Hibiscus rosa-sinensis L. by Agrobacterium rhizogenes. J Hortic Sci Biotech 84:204–208

    CAS  Google Scholar 

  • Dellaporta SL, Woods J, Hicks JB (1993) A plant DNA mini preparation: version 2. Plant Mol Biol Rep 1:19–22

    Article  Google Scholar 

  • Didry N, Dubrevil L, Pinkas M (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Die Pharmazie 49:681–683

    CAS  PubMed  Google Scholar 

  • Gangopadhyay M, Sircar D, Mitra A, Bhattacharya S (2008) Hairy root culture of Plumbago indica as a potent source for harvesting plumbagin. Biol Plant 52:533–537

    Article  CAS  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behavior of transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell Tissue Organ Cult 94:269–280

    Article  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346

    Article  CAS  PubMed  Google Scholar 

  • Hamill JD, Rhodes MJC (1988) A spontaneous, light independent and prolific plant regeneration response from hairy roots of Nicotiana hesperis transformed by Agrobacterium rhizogenes. J Plant Physiol 133:506–509

    CAS  Google Scholar 

  • Hazra B, Sarkar R, Bhattacharya S, Ghosh PK, Chel G, Dinda B (2008) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma and Leishmania denovani promastigotes in vitro. Phytother Res 16:133–137

    Article  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integrat Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Jaziri M, Yosimatsue K, Homes J, Shimomura K (1994) Traits of transgenic Atropa belladonna doubly transformed with different Agrobacterium rhizogenes strains. Plant Cell Tissue Organ Cult 38:257–262

    Article  CAS  Google Scholar 

  • Kang HJ, Anbazhagan VR, You XL, Moon HK, Yi JS, Choi YE (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tissue Organ Cult 85:187–196

    Article  CAS  Google Scholar 

  • Komaraiah P, Jogeswar G, Ramakrishna SV, Kavi Kishor PB (2004) Acetylsalicylic acid and ammonium-induced somatic embryogenesis and enhanced plumbagin production in suspension cultures of Plumbago rosea L. In Vitro Cell Dev Biol Plant 40:230–234

    Article  CAS  Google Scholar 

  • Kuo PL, Hsu YL, Cho CY (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  CAS  PubMed  Google Scholar 

  • Mallavadhani UV, Sahu G, Muralidhar J (2002) Screening of Plumbago species for the bio-active marker plumbagin. Pharm Biol 40(7):508–511

    Article  CAS  Google Scholar 

  • Mathew N, Paily KP, Vanamil AP, Balaraman KK (2002) Macrofilaricidal activity of the plant Plumbago indica/rosea in vitro. Drug Dev Res 56:33–39

    Article  CAS  Google Scholar 

  • Mei WY, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res 11:279–284

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Noda T, Tanaka N, Mano Y, Nabeshima H, Ohkawa H, Matsui C (1987) Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep 6:283–286

    Article  Google Scholar 

  • Panichayupakaranant P, Tewtrakul S (2002) Plumbagin production by root culture of Plumbago rosea. Electron J Biotechnol 5(3):11–12

    Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Article  CAS  PubMed  Google Scholar 

  • Radchuk VV, Korkhovoy VI (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Florida’. Plant Cell Tissue Organ Cult 81:203–212

    Article  CAS  Google Scholar 

  • Rashid SZ, Yamaji N, Kyo M (2007) Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco. Plant Cell Rep 26:1449–1455

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarasan V, Cripps R, Ramsay M, Atherton C, McMichen M, Prendergast G, Rowntree J (2006) Conservation: In vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol Plant 42(3):206–214

    Article  Google Scholar 

  • Saxena G, Banerjee S, Rahman L, Verma PC, Mallavarapu GR, Kumar S (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri insertion for improve essential oil quality. Plant Cell Tissue Organ Cult 90:215–223

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Vergauwe A, Geldre EV, Inze D, Van Montagu M, Van den Eeckhout E (1996) The use of amoxicillin and ticarcillin in combination with a β-lactamase inhibitor as decontaminating agents in the Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. J Biotechnol 52:89–95

    Article  CAS  Google Scholar 

  • Verma PC, Singh D, Rahman L, Gupta MM, Banerjee S (2002) In vitro-studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J Plant Physiol 159:547–552

    Article  CAS  Google Scholar 

  • Yoshimatsu K, Shimomura K, Yamazaki M, Saito K, Kiuchi F (2003) Transformation of Ipecac (Cephaelis ipecacuanha) with Agrobacterium rhizogenes. Planta Med 69:1018–1023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, Bose Institute for providing the necessary facilities and funding through an Institutional Fellowship to MG. The immensely helpful comments of the anonymous reviewers is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Gangopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2010_9702_MOESM1_ESM.eps

Supplementary Fig. 1: HPLC chromatograms, a. standard plumbagin, b. transformed plant grown in 0.5 mg l−1 BA for 1 week, c. non-transformed plant. (EPS 589 kb)

Supplementary Fig. 2: Flowchart for transformation and spontaneous regeneration in P. indica. (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangopadhyay, M., Chakraborty, D., Bhattacharyya, S. et al. Regeneration of transformed plants from hairy roots of Plumbago indica . Plant Cell Tiss Organ Cult 102, 109–114 (2010). https://doi.org/10.1007/s11240-010-9702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9702-z

Keywords

Navigation