Skip to main content
Log in

In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effect of different cytokinins on multiple shoot regeneration from shoots of Centaurea ultreiae was studied. The culture system consisted of solid basal half-strength Murashige and Skoog medium supplemented with one of four cytokinins [6-benzyladenine (BA), zeatin, kinetin, or N6-(2-isopentyl) adenine (2-iP)] at each of five different concentrations. The highest multiplication rate (5.52 shoots per explant) was obtained in the medium supplemented with 4.44 μM BA. Shoots were successfully rooted (91% success) by dipping the basal end into a solution containing 10 M 1-naphthaleneacetic acid for 30 s. Genetic stability of the regenerated plants was assessed by random amplified polymorphic DNA (RAPD) analysis and flow cytometry. In the initial randomly selected plant material (control) and 20 of its regenerants, 2,688 bands were generated by RAPD with 12 different primers, and the same banding profiles were exhibited. Molecular and cytological analyses did not reveal genomic alterations in any of the regenerated plants obtained on medium containing 4.44 μM BA. The success of acclimatization to environmental conditions—100% of plants were successfully acclimatized—suggests that the micropropagation system described is a reliable method for propagation of C. ultreiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant science. Plant Cell Rep 27:617–631. doi:10.1007/s00299-008-0507-z

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233. doi:10.1007/BF02672073

    Article  CAS  Google Scholar 

  • Bairu MW, Fennell CW, van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hort 108:347–351. doi:10.1016/j.scienta.2006.01.039

    Article  CAS  Google Scholar 

  • Bais HP, Green JB, Walker TS, Okemo PO, Vivanco JM (2002) In vitro propagation of Spilanthes mauritiana DC., an endangered medicinal herb, through axillary bud cultures. In Vitro Cell Dev Biol-Plant 38:598–601. doi:10.1079/IVP2002345

    Article  CAS  Google Scholar 

  • Bañares Á, Blanca G, Güemes J, Moreno JC, Ortiz S (eds) (2003) Atlas y libro rojo de la flora vascular amenazada de España. Dirección General de Conservación de la Naturaleza, Madrid

    Google Scholar 

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790. doi:10.1093/aob/mcm303

    Article  PubMed  Google Scholar 

  • Borthakur M, Dutta K, Nath SC, Singh RS (2000) Micropropagation of Eclipta alba and Eupatorium adenophorum using a single-step nodal cutting technique. Plant Cell Tiss Org Cult 62:239–242. doi:10.1023/A:1006465517666

    Article  Google Scholar 

  • Brutti C, Apóstolo NM, Ferrarotti SA, Llorente BE, Krymkiewicz N (2000) Micropropagation of Cynara scolymus L. employing cyclodextrins to promote rhizogenesis. Sci Hort 83:1–10. doi:10.1016/S0304-4238(99)00067-9

    Article  CAS  Google Scholar 

  • Clemente M (1991) The micropropagation unit at the Cordoba Botanic Garden, Spain. Botanic Gardens Micropropagation News 1:30–32

    Google Scholar 

  • Clemente M, Contreras P, Susin J, Pliego-Alfaro F (1991) Micropropagation of Artemisia granatensis. HortSci 26:420

    CAS  Google Scholar 

  • Cuenca S, Amo-Marco JB (2000) In vitro propagation of Centaurea spachii from inflorescence stems. Plant Growth Regul 30:99–103. doi:10.1023/A:1006356811180

    Article  CAS  Google Scholar 

  • Cuenca S, Amo-Marco JB, Parra R (1999) Micropropagation from inflorescence stems of the Spanish endemic plant Centaurea paui Loscos ex Willk. (Compositae). Plant Cell Rep 18:674–679. doi:10.1007/s002990050641

    Article  CAS  Google Scholar 

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  • Estades J, Medrano H (1990) Contribución a la conservación de plantas endémicas de Baleares mediante cultivo in vitro. In: Hernández-Bermejo JE, Clemente M, Heywood V (eds) Conservation techniques in botanic gardens. Koeltz Scientific Books, Koenigstein, pp 121–123

    Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Exegetics Limited, Edington

    Google Scholar 

  • González C, Rubio A, Ortega C (1989) Propagación in vitro de endemismos canarios en peligro de extinción: Atractylis arbuscula Svent. Et Michaelis. Bot Macaronesica 17:47–56

    Google Scholar 

  • Goto S, Thakur RC, Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep 18:193–197. doi:10.1007/s002990050555

    Article  CAS  Google Scholar 

  • Guo WL, Gong L, Ding ZF, Li YD, Li FX, Zhao SP, Liu B (2006) Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. F., as revealed by ISSR and RAPDs markers. Plant Cell Rep 25:896–906. doi:10.1007/s00299-006-0131-8

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Gao M, Liu CZ (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep 26:261–265. doi:10.1007/s00299-006-0230-6

    Article  CAS  PubMed  Google Scholar 

  • Hashmi G, Huettel R, Meyer R, Krusberg L, Hammerschlag F (1997) RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Plant Cell Rep 16:624–627. doi:10.1007/BF01275503

    Article  CAS  Google Scholar 

  • Hossain A, Konisho M, Minami K, Nemoto K (2003) Somaclonal variation of regenerated plants in chili pepper (Capsicum annuum L.). Euphytica 130:233–239. doi:10.1023/A:1022856725794

    Article  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459. doi:10.1016/S1360-1385(03)00191-2

    Article  CAS  PubMed  Google Scholar 

  • Hummer KE (1999) Biotechnology in plant germplasm acquisition. In: Benson EE (ed) Plant Conservation Biotechnology. Taylor & Francis, London, pp 25–40

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Freeman and Company, San Francisco

    Google Scholar 

  • Kashif Husain M, Anis M (2006) Rapid in vitro propagation of Eclipta alba (L) Hassk by shoot tip culture. J Plant Biochem Biotech 15:147–179

    Google Scholar 

  • Lanham PG, Brenner RM (1999) Genetic characterisation of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. J Hortic Sci Biol 74:361–366

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation–a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689. doi:10.1093/aob/mcl141

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Hanotte O, Guarino L (1996) Standardization of molecular genetic techniques for the characterization of germplasm collections: the case of random amplified polymorphic DNA (RAPD). Plant Gen Res NewsLetter 107:50–54

    Google Scholar 

  • Mallón R, Bunn E, Turner SR, González ML (2008) Cryopreservation of Centaurea ultreiae (Compositae) a critically endangered species from Galicia (Spain). CryoLetters 29:363–370

    PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ortega C, González C (1985) Contribución a la conservación ex situ de especies canarias en peligro: propagación in vitro de Senecio hermosae Pitard. Bot Macaronesica 14:59–72

    Google Scholar 

  • Otto F (1992) Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A (ed) Flow cytometry and cell sorting. Springer, Berlin, pp 101–104

    Google Scholar 

  • Ozel CA, Khawar KM, Mirici S, Ozcan S, Arslan O (2006) Factors affecting in vitro plant regeneration of the critically endangered Mediterranean knapweed (Centaurea tchihatcheffii Fisch et. Mey). Naturwissenschaften 93:511–517. doi:10.1007/s00114-006-0139-5

    Article  CAS  PubMed  Google Scholar 

  • Palombi MA, Damiano C (2002) Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep 20:1061–1066. doi:10.1007/s00299-001-0430-z

    Article  CAS  Google Scholar 

  • Pfosser M, Amon A, Lelley T, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393

    Article  CAS  PubMed  Google Scholar 

  • Price HJ, Morgan PW, Johnston S (1998) Environmentally correlated variation in 2C nuclear DNA content measurements in Helianthus annuus L. Ann Bot 82:95–98

    Article  Google Scholar 

  • Radić S, Prolić M, Pavlica M, Pevalek-kozlina B (2005) Cytogenetic stability of Centaurea ragusina long-term culture. Plant Cell Tiss Org Cult 82:343–348. doi:10.1007/s11240-005-2388-y

    Article  Google Scholar 

  • Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—Progress in the past decade. In Vitro Cell Dev Biol-Plant 42:206–214. doi:10.1079/IVP2006769

    Article  Google Scholar 

  • Sujatha G, Ranjitha Kumari BD (2007) Effect of phytohormones on micropropagation of Artemisia vulgaris L. Acta Physiol Plant 29:189–195. doi:10.1007/s11738-006-0023-0

    Article  Google Scholar 

  • Valladares S, Sánchez C, Martínez MT, Ballester A, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: tru-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886. doi:10.1007/s00299-005-0108-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R. M. was financially supported by a predoctoral fellowship from the Xunta de Galicia. The authors thank Patricia Corral for help with the flow cytometry analysis. The study was partially financed by the Xunta de Galicia, project PGIDT/PGIDIT 07MDS009200PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luz González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallón, R., Rodríguez-Oubiña, J. & González, M.L. In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss Organ Cult 101, 31–39 (2010). https://doi.org/10.1007/s11240-009-9659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9659-y

Keywords

Navigation