Versatility and commercial status of microbial keratinases: a review

review paper
  • 68 Downloads

Abstract

The world’s increasing population and shortage of food and feed is creating an urgently for us to look for new protein sources from waste products like keratinous waste. Poor management of these wastes has made them one of the major recalcitrant pollutants in nature. Microbial keratinases offers an economic and eco-friendly alternative for degrading and recycling keratinous waste into valuable byproducts. Diverse groups of microorganisms viz., bacteria, fungi and actinomycetes have the ability to degrade recalcitrant keratin by producing keratinase enzyme. Microbial keratinases exhibits great diversity in its biochemical properties with respect to activity and stability in various pH and temperature ranges as well as in the range of recalcitrant proteins it degrades like those present in feathers, hairs, nails, hooves etc. Owing to diverse properties and multifarious biotechnological implications, keratinases can be considered as promising biocatalysts for preparation of animal nutrients, protein supplements, leather processing, fiber modification, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical, cosmetic and biomedical industries, and waste management. This review article presents an overview of keratin structure and composition, mechanism of microbial keratinolysis, diversity of keratinolytic microorganisms, and their potential applications in various fields.

Keywords

Keratin Microbial keratinase Feather meal Waste management Degradation Chicken feathers 

References

  1. Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, Van Dyke MA (2009) Keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B90:45–54Google Scholar
  2. Abraham PK, Srinivas J, Venkateswarulu TC, Indira M, John babu D, Diwakar T, Vidya PK (2012) Investigation of the potential antibiofilm activities of plant extracts. Int J Pharm Pharm Sci 4:282–285Google Scholar
  3. Acda MN (2010) Waste chicken feather as reinforcement in cement-bonded composites. Philipp J Sci 139(2):161–166Google Scholar
  4. Adetunji CO, Makanjuola OR, Arowora KA, Afolayan SS, Adetunji JB (2012) Production and application of keratin-based organic fertilizer from microbially hydrolyzed feathers to cowpea (Vigna unguiculata). Int J Sci Eng Res 3(12):164–172Google Scholar
  5. Agrawal B, Dalal M (2015) Screening and characterization of keratinase enzyme obtained from keratin degrading microorganism isolated from Sanjan poultry waste dumping soil. Eur Acad Res 2(11):13986–13994Google Scholar
  6. Akhtar W, Edwards HGM (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratinolytic biopolymers. Spectrochim Acta A Mol Biomol Spectrosc 53:81–90Google Scholar
  7. Allure N, Madhusudhan DN, Agsar D (2015) Detection of keratinolytic Actinobacteria and evaluation of bioprocess for production of alkaline keratinase. Int J Curr Microbiol Appl Sci 4(7):907–918Google Scholar
  8. Al-Musallam AA, Al-Zarban SS, Fasasi YA, Kroppenstedt RM, Stackebrandt E (2003) Amycolatopsis keratiniphila sp. nov., a novel keratinolytic soil actinomycete from Kuwait. Int J Syst Evol Microbiol 53:871–874CrossRefGoogle Scholar
  9. Al-Musallam A, Al-Gharabally D, Vadakkancheril N (2013) Biodegradation of keratin in mineral-based feather medium by thermophilic strains of a new Coprinopsis sp. Int Biodeterior Biodegradation 79:42–48.  https://doi.org/10.1016/j.ibiod.2012.11.011 CrossRefGoogle Scholar
  10. Al-Sane NA, Al-Musallam A, Onifade AA (2002) The isolation of keratin degrading microorganisms from Kuwait soils: production and characterization of their keratinases. Kuwait J Sci Eng 29:125–138Google Scholar
  11. Al-Zarban SS, Al-Musallam AA, Abbas IH, Fasasi YA (2002) Noteworthy salt loving actinomycetes from Kuwait. Kuwait J Sci Eng 29(1):99–109Google Scholar
  12. Anbu P, Gopinath SCB, Hilda A, Lakshmipriya T, Annadurai G (2007) Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour Technol 98:1298–1303CrossRefGoogle Scholar
  13. Anbu P, Hilda A, Sur HW, Hur BK, Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegradation 62:287–292CrossRefGoogle Scholar
  14. Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220.  https://doi.org/10.1016/j.pep.2013.01.007 CrossRefGoogle Scholar
  15. Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Koman LA, Van Dyke ME (2008) Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg Am 33:1541–1547CrossRefGoogle Scholar
  16. Apodaca G, McKerrow JH (1989) Regulation of Trichophyton rubrum proteolytic activity. Infect Immun 57:3081–3090Google Scholar
  17. Awasthi R, Kuahwaha RKS (2011) Keratinase activity of some hyphomycetous fungi from dropped off chicken feathers. Int J Pharm Biol Sci Arch 2(6):1745–1750Google Scholar
  18. Balaji S, Kumar MS, Karthikeyan R, Kumar R, Kirubanandan S, Sridhar R, Sehgal PK (2008) Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J Microbiol Biotechnol 24:2741–2745CrossRefGoogle Scholar
  19. Balint B, Bagi Z, Rakhley G, Perei K, Kovacs KL (2005) Utilization of keratin containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410CrossRefGoogle Scholar
  20. Bartelt-Hunt SL, Bartz JC (2013) Behavior of prions in the environment: implications for prion biology. PLoS Pathog 9(2):e1003113.  https://doi.org/10.1371/journal.ppat.1003113 CrossRefGoogle Scholar
  21. Benkiar A, Nadia Z, Badis A, Rebzani F, Soraya B, Rekik H, Naili B, Ferradji F, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a thermo- and detergent stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeterior Biodegradation 83:129–138.  https://doi.org/10.1016/j.ibiod.2013.05.014 CrossRefGoogle Scholar
  22. Bernal C, Vidal L, Valdivieso E, Coello N (2003) Keratinolytic activity of Kocuria rosea. World J Microbiol Biotechnol 19(3):255–261CrossRefGoogle Scholar
  23. Bertsch A, Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour Technol 96:1703–1708.  https://doi.org/10.1016/j.biortech.2004.12.026 CrossRefGoogle Scholar
  24. Bishmi A, Thatheyus J, Ramya D (2015) Biodegradation of poultry feathers using a novel bacterial isolate Pseudomonas aeruginosa. Int J Res Microbiol Biotechnol 1(1):25–30Google Scholar
  25. Block RJ (1951) Chemical classification of keratins. Ann NY Acad Sci 53:608–612CrossRefGoogle Scholar
  26. Boakye MAD, Rijal NP, Adhikari U, Bhattarai N (2015) Fabrication and characterization of electrospun PCL-MgO-keratin based composite nanofibers for biomedical applications. Materials 8:4080–4095CrossRefGoogle Scholar
  27. Boeckle B, Galunsky B, Mueller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61(10):3705–3710Google Scholar
  28. Bohacz J (2017) Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33(1):11–16CrossRefGoogle Scholar
  29. Bohacz J, Korniłłowicz-Kowalska T (2009) Changes in enzymatic activity in compost containing chicken feathers. Bioresour Technol 100:3604–3612.  https://doi.org/10.1016/j.biortech.2009.02.042 CrossRefGoogle Scholar
  30. Bouacem K, Bouanane-Darenfed A, Jaouadi NZ, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B (2016) Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 86:321–328CrossRefGoogle Scholar
  31. Bragulla HH, Homberger DJ (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559.  https://doi.org/10.1111/j.1469-7580.2009.01066.x CrossRefGoogle Scholar
  32. Braikova D, Vasileva-Tonkova E, Gushterova A, Nedkov P (2007) Degradation of keratin and collagen containing wastes by enzyme mixtures produced by newly isolated thermophylic actinomycetes. In: Bhattacharya SK (ed) Enzyme mixtures and complex biosynthesis. Landes Biosciences, Texas, pp 49–63Google Scholar
  33. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116.  https://doi.org/10.1007/s11947-007-0025-y CrossRefGoogle Scholar
  34. Brandelli A, Daroit D, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750.  https://doi.org/10.1007/s00253-009-2398-5 CrossRefGoogle Scholar
  35. Bressollier P, Letourneau F, Urdaci M, Verneuil B (1999) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol 65:2570–2576Google Scholar
  36. Burtt EH (1979) Tips on wings and other things. In: Burtt EH (ed) The behavioral significance of color. Garland STMP Press, New York, pp 75–110Google Scholar
  37. Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria and color variation among song sparrows. Condor 106:681–686CrossRefGoogle Scholar
  38. Butler M, Johnson AS (2004) Are melanized feather barbs stronger? J Exp Biol 207:285–293CrossRefGoogle Scholar
  39. Cai C, Zheng X (2009) Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotechnol 36:875–883CrossRefGoogle Scholar
  40. Cannan RK, Levy M (1950) The chemistry of amino acids and proteins. Annu Rev Biochem 19:125–148CrossRefGoogle Scholar
  41. Cao L, Tan H, Liu Y, Xa Xue, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394.  https://doi.org/10.1111/j.1472-765X.2008.02327.x CrossRefGoogle Scholar
  42. Cao ZJ, Lu D, Luo LS, Deng YX, Bian YG, Zhang XQ, Zhou MH (2012) Composition analysis and application of degradation products of whole feathers through a large scale of fermentation. Environ Sci Pollut Res 19:2690–2696.  https://doi.org/10.1007/s11356-012-0763-x CrossRefGoogle Scholar
  43. Cascarosa E, Gea G, Arauzo J (2012) Thermochemical processing of meat and bone meal: a review. Renew Sustain Energy Rev 16:942–957.  https://doi.org/10.1016/j.rser.2011.09.015 CrossRefGoogle Scholar
  44. Cavello IA, Hours RA, Cavalitto SF (2012) Bioprocessing of “hair waste” by Paecilomyces lilacinus as a source of a bleach-stable, alkaline, and thermostable keratinase with potential application as a laundry detergent additive: characterization and wash performance analysis. Biotechnol Res Int 2012:369308.  https://doi.org/10.1155/2012/369308 CrossRefGoogle Scholar
  45. Cedrola SML, Melo ACN, Mazotto AM, Lins U, Zingali RB, Rosado AS, Peixoto RS, Vermelho AB (2012) Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J Microbiol Biotechnol 28:259–1269CrossRefGoogle Scholar
  46. Chaudhari P, Chaudhari B, Chincholkar S (2013) Iron containing keratinolytic etalloprotease produced by Chryseobacterium gleum. Process Biochem 48:144–151.  https://doi.org/10.1016/j.procbio.2012.11.009 CrossRefGoogle Scholar
  47. Chikura T, Izumi N, Matsumoto S (1994) Manufacture of amino acid containing fertilizers. Jpn Kokai Tokkyo Koho JP 06:40 [786 [94 40,786] (C1.C05C11/00)] Google Scholar
  48. Chitte RR, Nalawade VK, Dey S (1999) Keratinolytic activity from the broth of a feather degrading thermophilic Sterptomyces thermoviolaceous strain SD8. Lett Appl Microbiol 28:131–136CrossRefGoogle Scholar
  49. Cho HJ (1983) Inactivation of the scrapie agent by pronase. Can J Comp Med 47:494–496Google Scholar
  50. Choi JM, Nelson PV (1996) Developing a slow release nitrogen fertilizer from organic sources using poultry feathers. J Am Soc Hortic Sci 121:639–643Google Scholar
  51. Correa APF, Daroit DJ, Brandelli A (2009) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegradation.  https://doi.org/10.1016/j.ibiod.2009.06.015 Google Scholar
  52. Correa APF, Daroit DJ, Brandelli A (2010) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegradation 64:1–6.  https://doi.org/10.1016/j.ibiod.2009.06.015 CrossRefGoogle Scholar
  53. Cortified MC, Robson A (1955) The amino acid composition of wool. Biochem J 59(1):62–68.  https://doi.org/10.1042/bj0590062 CrossRefGoogle Scholar
  54. Coward-Kelly G, Chang VS, Agbogbo FK, Holtzapple MT (2006) Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour Technol 97:1337–1343.  https://doi.org/10.1016/j.biortech.2005.05.021 CrossRefGoogle Scholar
  55. Crookston RK (1984) The rotation effect: what causes it to boost yields? Crops Soils 36(6):12–14Google Scholar
  56. Dalev PG (1994) Utilization of waste feather from poultry slaughter for production of a protein concentrate. Bioresour Technol 48:265–267CrossRefGoogle Scholar
  57. Darah Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH (2013) Microsporum fulvum IBRL SD3: as novel isolate for chicken feathers degradation. Appl Biochem Biotechnol 171:1900–1910CrossRefGoogle Scholar
  58. De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2006) Thermophilic protease production by Streptomyces sp. 594 in submerged and solid state fermentations using feather meal. J Appl Microbiol 100:641–647CrossRefGoogle Scholar
  59. De-Toni CH, Richter MF, Chagas JR, Henriques JAP, Termignoni C (2002) Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophila strain. Can J Microbiol 48:342–348CrossRefGoogle Scholar
  60. Ding S, Sun H (2009) Preparation method of cutin dispelling cosmetics and use method. Patent CN101396328Google Scholar
  61. Duarte TR, Oliveira SS, Macrae ASML, Mazotto CAM, Souza EP, Melo ACN, Vermelho AB (2011) Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz J Med Biol Res 44:212–216CrossRefGoogle Scholar
  62. Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N (2015) Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res B Appl Biomater 103B:21–30CrossRefGoogle Scholar
  63. Elhoula MB, Jaouadia NZ, Rekika H, Benmrada MO, Mechria S, Moujeheda E, Kourdalib S, El Hattabc M, Badisb A, Bejara Samir, Jaouadia B (2016) Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int J Biol Macromol 92:299–315CrossRefGoogle Scholar
  64. Encarna P, Elena FK (2011) Tape, in particular, adhesive tape, for the treatment of skin disorders comprising at least one hyperkeratosis inhibitor and/or at least one keratinolytic agent. Patent O2011050947Google Scholar
  65. Esawy MA (2007) Isolation and partial characterization of extracellular keratinase from a novel mesophilic Streptomyces albus AZA. Res J Agric Biol Sci 3(6):808–817Google Scholar
  66. Essien JP, Umoh AA, Akpan EJ, Eduok SI, Umoiyoho A (2009) Growth, keratinolytic proteinase activity and thermotolerance of dermatophytes associated with alopecia in Uyo, Nigeria. Acta Microbiol Immunol Hung 56:61–69CrossRefGoogle Scholar
  67. Fakhfakh N, Ktari N, Siala R, Nasri M (2013) Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. J Appl Microbiol 115:424–433CrossRefGoogle Scholar
  68. Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int Biodeterior Biodegradation 82:66.  https://doi.org/10.1016/j.ibiod.2013.03.008 CrossRefGoogle Scholar
  69. Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb Technol 34:85–93.  https://doi.org/10.1016/j.enzmictec.2003.09.002 CrossRefGoogle Scholar
  70. Fellahi S, Chibani A, Lagerstedt EF, Taherzadeh MJ (2016) Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Express 6:42.  https://doi.org/10.1186/s13568-016-0213-0 CrossRefGoogle Scholar
  71. Filipello Marchisio V (2000) Keratinophylic fungi: their role in nature and degradation of keratinous substrate. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophylic fungi. Revista Iberoamericana de Micología, Spain, pp 86–92Google Scholar
  72. Forgacs G, Alinezhad S, Mirabdollah A, Feuk-Lagerstedt E, Horváth IS (2011) Biological treatment of chicken feather waste for improved biogas production. J Environ Sci 23:1747–1753.  https://doi.org/10.1016/S1001-0742(10)60648-1 CrossRefGoogle Scholar
  73. Forgacs G, Lundin M, Taherzadeh M, Horvath I (2013) Pretreatment of chicken feather waste for improved biogas production. Appl Biochem Biotechnol 169:2016–2028.  https://doi.org/10.1007/s12010-013-0116-3 CrossRefGoogle Scholar
  74. Fortier M, Cadrin M (2012) Simple epithelial keratins k8 and k18: from structural to regulatory protein. In: Dullaart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Hauppauge, pp 1–35Google Scholar
  75. Frankel MJ, Gillespe JM (1976) The proteins of the keratin component of bird’s beaks. Aust J Biol Sci 29(5–6):467–479CrossRefGoogle Scholar
  76. Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl Environ Microbiol 62(8):2875–2882Google Scholar
  77. Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130CrossRefGoogle Scholar
  78. Gegeckas A, Gudiukaite R, Debski J, Citavicius D (2015) Keratinous waste decomposition and peptide production bykeratinase from Geobacillus stearothermophilus AD-11. Int J Biol Macromol 75:158–165CrossRefGoogle Scholar
  79. Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Technol 32:519–524.  https://doi.org/10.1016/S0141-0229(02)00324-1 CrossRefGoogle Scholar
  80. Ghosh A, Chakrabarti K, Chattopadhyay D (2008) Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotechnol 35(8):825–834CrossRefGoogle Scholar
  81. Gierloff BCH, Catic I (1961) Om anvendelse of griseofulvin specielt in veterinaer praksis. Nord Vet Med 13:571–592Google Scholar
  82. Gioppo NMR, Moreira-Gasparin FG, Costa AM, Alexandrino AM, Souza CGM, Peralta RM (2009) Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J Ind Microbiol Biotechnol 36:705–711CrossRefGoogle Scholar
  83. Godheja J, Shekhar SK, Modi DR (2014) Biodegradation of keratin from chicken feathers by fungal species as a means of sustainable development. Asian J Pharm Technol 4(2):69–73Google Scholar
  84. Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH (2004) Bacterial degradation of black and white feathers. Auk 121:656–659CrossRefGoogle Scholar
  85. Gousterova A, Nustorova M, Paskaleva D, Naydenov M, Neshev G, Vasileva-Tonkova E (2012) Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application. Int J Environ Res 6:467–474Google Scholar
  86. Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microspores to some know proteases. Appl Environ Microbiol 71:3420–3426.  https://doi.org/10.1128/AEM.71.7.3420-3426.2005 CrossRefGoogle Scholar
  87. Greaves MS, Moll JMH (1976) Amino acid composition of human nails as measured by gas–liquid chromatography. Clin Chem 22(10):1608–1613Google Scholar
  88. Gunderson AR, Frame AM, Swaddle JP, Forsyth MH (2008) Resistance of melanized feathers to bacterial degradation: is it really so black and white? J Avian Biol 39:539–545CrossRefGoogle Scholar
  89. Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33.  https://doi.org/10.1007/s00253-005-0239-8 CrossRefGoogle Scholar
  90. Gupta R, Rajput R, Sharma R, Gupta N (2013a) Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 97:9931–9940.  https://doi.org/10.1007/s00253-013-5292-0 CrossRefGoogle Scholar
  91. Gupta R, Sharma R, Beg Q (2013b) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33:216–228.  https://doi.org/10.3109/07388551.2012.685051 CrossRefGoogle Scholar
  92. Gurav RG, Jadhav JP (2013a) A novel source of biofertilizer from feather biomass for banana cultivation. Environ Sci Pollut Res 20:4532–4539CrossRefGoogle Scholar
  93. Gurav RG, Jadhav JP (2013b) Biodegradation of keratinous waste by Chryseobacterium sp. RBT isolated from soil contaminated with poultry waste. J Basic Microbiol 53(2):128–135CrossRefGoogle Scholar
  94. Gurav RG, Tang J, Jadhav JP (2016) Sulfitolytic and keratinolytic potential of Chryseobacterium sp. RBT revealed hydrolysis of melanin containing feathers. Biotech 6:145.  https://doi.org/10.1007/s13205-016-0464-0 Google Scholar
  95. Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21(6–7):831–834.  https://doi.org/10.1007/s11274-004-2241-1 CrossRefGoogle Scholar
  96. Haake AR, Konig G, Sawyer RH (1984) Avian feather development: relationships between morphogenesis and keratinization. Dev Biol 106:406–413CrossRefGoogle Scholar
  97. Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, Badis A, Ladjama A (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117:413–421.  https://doi.org/10.1016/j.jbiosc.2013.09.006 CrossRefGoogle Scholar
  98. Hadas A, Kautsky L (1994) Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil Res 38:165–170CrossRefGoogle Scholar
  99. Han M, Luo W, Gu Q, Yu X (2012) Isolation and characterization of a keratinolytic protease from a feather- degrading bacterium Pseudomonas aeruginosa C11. Afr J Microbiol Res 6(9):2211–2221Google Scholar
  100. Hartrianti P, Ling L, Goh LMM, Ow KSA, Samsonray R, Sow WT (2015) Modulating mesenchymal stem cell behavior using human hair keratin-coated surfaces. Stem Cells Int.  https://doi.org/10.1155/2015/752424 Google Scholar
  101. Hirata A, Hori Y, Koga Y, Okada J, Sakudo A, Ikuta K, Kanaya S, Takano K (2013) Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensisin detergents and its ability to degrade the abnormal prion protein. BMC Biotechnol 13:19CrossRefGoogle Scholar
  102. Huang H, Spencer JL, Soutyrine A, Guan J, Rendulich J (2007) Evidence for degradation of abnormal prion protein in tissues from sheep with scrapie during composting. Can J Vet Res 71:34–40Google Scholar
  103. Huang Y, Busk PK, Herbst FA, Lange L (2015) Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl Microbiol Biotechnol 99(22):9635–9649.  https://doi.org/10.1007/s00253-015-6805-9 CrossRefGoogle Scholar
  104. Hui Z, Doi H, Kanouchi H, Matsuura Y, Mohri S, Nonomura Y, Oka T (2004) Alkaline serine protease produced by Streptomyces sp. degrades PrPSc. Biochem Biophys Res Commun 321(1):45–50CrossRefGoogle Scholar
  105. Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001a) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods 47:199–208CrossRefGoogle Scholar
  106. Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001b) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods 47:199–208.  https://doi.org/10.1016/S0167-7012(01)00302-5 CrossRefGoogle Scholar
  107. Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol 45(3):217–222CrossRefGoogle Scholar
  108. Iruolaje FO, Ogbeba J, Tula MY, Ijebor JA, Dogo BA (2016) Isolation and identification of keratinolytic bacteria that exhibit feather-degrading potentials. J Adv Biol Biotechnol 5(2):1–9CrossRefGoogle Scholar
  109. Itsune O, Isao M, Keizo H, Naoya I, Mayumi H, Hisami M (2002) Cleaning agent composition. Patent JP200225629Google Scholar
  110. Jadhav RS, Karad DD, Kulakrni SW (2016) Isolation, identification and characterization of keratinolytic Streptomyces coelicoflavus. Int J Curr Microbiol Appl Sci 5(7):153–163CrossRefGoogle Scholar
  111. Jani SA, Soni R, Patel H, Prajapati B, Patel Gayatri (2014) Screening, isolation and characterization of keratin degrading actinomycetes Streptomyces sp. and Saccharothrix xinjiangensi and analyzing their significance for production of keratinolytic protease and feed grade amino acids. Int J Curr Microbiol Appl Sci 3(9):940–955Google Scholar
  112. Jaouadi B, Aghajari N, Haser R, Bejar S (2010) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site directed mutagenesis. Biochimie 92:360–369CrossRefGoogle Scholar
  113. Jayalakshmi T, Krishnamoorthy P, Kumar GR, Sivamani P (2010) Isolation and screening of a feather-degrading keratinolytic actinomycetes from Actinomyces sp. J Am Sci 6(12):45–48Google Scholar
  114. Jeong JH, Lee OM, Jeon YD, Kim JD, Lee NR, Lee CY, Son HJ (2010) Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem 45:1738–1745.  https://doi.org/10.1016/j.procbio.2010.07.020 CrossRefGoogle Scholar
  115. Jin HS, Park SY, Kim K, Lee YJ, Nam GW, Kang NJ, Lee DW (2017) Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS ONE 12(2):e0172712.  https://doi.org/10.1371/journal.pone.0172712 CrossRefGoogle Scholar
  116. Johnson CJ, Pedersen JA, McKenzie D, Aiken JM (2011) Meat and bone meal and mineral feed additives increase the risk of oral prion disease transmission. J Toxicol Environ Health 74:161–166CrossRefGoogle Scholar
  117. Kaluzewska M, Wicz KWA, Wski J (1991) Microscopic examination of keratin substrates subjected to the action of the enzymes of Streptomyces fradiae. Int Biodeterior Biodegradation 27:11–26CrossRefGoogle Scholar
  118. Kanbe T, Tanaka K (1982) Ultrastructure of the invasion of human hair in vitro by the keratinophilic fungus Microsporum gypsum. Infect Immun 38:706–715Google Scholar
  119. Kanbe T, Suzuki S, Tanaka K (1986) Structural differentiation in the frond and boring hyphae of the dermatophyte Microsporum canis invading human hair in vitro. J Electron Microsc (Tokyo) 35:38–46Google Scholar
  120. Kansoh AL, Hossiny EN, Abd El-Hameed EK (2009) Keratinase production from feathers wastes using some local Streptomyces isolates. Aust J Basic Appl Sci 3:561–571Google Scholar
  121. Karshan M (1930) The chemistry and staining reactions of keratin. J Dent Res 10:181–186CrossRefGoogle Scholar
  122. Karthikeyan R, Balaji S, Sehgal P (2007) Industrial applications of keratins—a review. J Sci Ind Res 66:710–715Google Scholar
  123. Kaul S, Sumbali G (1997) Keratinolysis by poultry farm soil fungi. Mycopathologia 139:137–140CrossRefGoogle Scholar
  124. Kazi YF, Kumar P, Soomro IH (2015) Characterization of the keratinolytic activity of indigenous Bacillus subtilis keratinase. J Chem Pharm Res 7(4):800–809Google Scholar
  125. Kazzaz AE, Feizi HZ, Guvenmez HK (2015) Keratinolytic protease production and characterization from Bacillus sp. isolated from poultry wastes. Int J Appl Biol Pharm 6(4):63–73Google Scholar
  126. Khardenavis A, Kapley A, Purohit H (2009) Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manag 29:1409–1415CrossRefGoogle Scholar
  127. Kim JD (2003) Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 31:157–161CrossRefGoogle Scholar
  128. Kim JD (2007) Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus Strain K-03. Microbiology 35(4):219–225Google Scholar
  129. Kim JM, Lim WJ, Suh HJ (2001) Feather degrading Bacillus species from poultry waste. Process Biochem 37:287–291CrossRefGoogle Scholar
  130. Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochem Biophys Acta 1480:117–131.  https://doi.org/10.1016/S0167-4838(00)00068-6 Google Scholar
  131. Kojima M, Kanai M, Tominaga M, Kitazume S, Inoue A, Horikoshi K (2006) Isolation and characterization of a feather degrading enzyme from Bacillus pseudofirmis FA30-01. Extremophiles 10:229–235CrossRefGoogle Scholar
  132. Korkmaz H, Hur H, Diyncer S (2004) Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste. Ann Microbiol 54:201–211Google Scholar
  133. Korniłłowicz-Kowalska T (1999) Studies on decomposition of keratin wastes by saprotrophic microfungi. III. Activity and properties of keratinolytic enzymes. Acta Mycol 34:65–78CrossRefGoogle Scholar
  134. Kornillowicz-Kowalska T, Bohacz J (2010) Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste. Bioresour Technol 101:1268–1276CrossRefGoogle Scholar
  135. Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manage 31:1689–1701.  https://doi.org/10.1016/j.wasman.2011.03.024 CrossRefGoogle Scholar
  136. Kota KP, Shaik SS, Kota RK, Karlapudi AP (2014) Bioplastic from chicken feather waste. Int J Pharm Sci Rev Res 27(2):373–375Google Scholar
  137. Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S (2014) Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene 542:23–28CrossRefGoogle Scholar
  138. Krelpak L, Doucet J, Briki F (2004) New aspects of the α-helix to β-sheets transition in stretched hard α-keratin fibers. Biophys J 8:640–647Google Scholar
  139. Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, Sekaran G (2008) Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 104:411–419.  https://doi.org/10.1111/j.1365-2672.2007.03564.x Google Scholar
  140. Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28(9):1025–1026CrossRefGoogle Scholar
  141. Kunert J (1989) Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J Basic Microbiol 29(9):597–604CrossRefGoogle Scholar
  142. Kunert J (2000) Physiology of keratinophilic fungi. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophilic fungi. Revista Iberoamericana de Micología, Spain, pp 77–85Google Scholar
  143. Laba W, Choinska A, Rodziewicz A, Piegza M (2015) Keratinolytic abilities of Micrococcus luteus from poultry waste. Braz J Microbiol 46(3):691–700CrossRefGoogle Scholar
  144. Lange L, Busk PK, Huang Y (2014) Use of a microbial composition for the degradation of keratinaceous materials. Denmark Patent WO 2014/169920 A2, 23 October 2014Google Scholar
  145. Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096CrossRefGoogle Scholar
  146. Langeveld JPM, Wang JJ, Van De Wiel DFM, Shih GC (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789CrossRefGoogle Scholar
  147. Lateef A, Oloke JK, Gueguim Kana EB, Sobowale BO, Ajao SO, Bello BY (2010) Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int Biodeterior Biodegradation 64:162–165CrossRefGoogle Scholar
  148. Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35.  https://doi.org/10.1007/s40089-014-0133-4 CrossRefGoogle Scholar
  149. Lee H, Suh DB, Hwang JH, Suh HJ (2002) Characterization of a keratinolytic metalloprotease from Bacillus spp. SCB-3. Appl Biochem Biotechnol 97:123–133CrossRefGoogle Scholar
  150. Lee YJ, Kim JH, Kim HK, Lee JS (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol Bioprocess Eng 9:17–22CrossRefGoogle Scholar
  151. Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med 1(4):255–265CrossRefGoogle Scholar
  152. Lee YJ, Dhanasingh I, Ahn JS, Jin HS, Choi JM, Lee SH, Lee DW (2015) Biochemical and structural characterization of a keratin-degrading M32 carboxypeptidase from Fervidobacterium islandicum AW-1. Biochem Biophys Res Commun 468:927–933CrossRefGoogle Scholar
  153. Letourneau F, Soussotte V, Bressollier P, Brandland P, Verneuil B (1998) Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett Appl Microbiol 26:77–80CrossRefGoogle Scholar
  154. Lin X, Lee CG, Casale ES, Shih JCH (1992) Purification and characterization of a keratinase from a feather degrading Baciilus licheniformis strain. Appl Environ Microbiol 58:3271–3275Google Scholar
  155. Lin X, Tang J, Koelsch G, Monod M, Foundling S (1993) Recombinant Canditropsin, an extracellular aspartic protease from yeast Candida tropicalis. J Biol Chem 268:20143–20147Google Scholar
  156. Lin X, Inglis GD, Yanke LJ, Cheng KJ (1999) Selection and characterization of feather-degrading bacteria from canola meal compost. J Ind Microbiol Biotechnol 23:149–153CrossRefGoogle Scholar
  157. Lindgren J, Sjovall P, Carney RM, Cincotta A, Uvdal P, Hutcheson SW (2015) Molecular composition and ultrastructure of Jurassic paravian feathers. Sci Rep 27(5):13520.  https://doi.org/10.1038/srep13520 CrossRefGoogle Scholar
  158. Liu Q, Longa K, Lub F, Chena J (2017) Biodegradation and antibacterial activity of a feather-degrading strain of bacterium. Biocatal Agric Biotechnol 9:195–200Google Scholar
  159. Lucas FS, Broennimann O, Febbraro I, Heeb P (2003) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45:282–290CrossRefGoogle Scholar
  160. Malviya HK, Rajak RC, Hasija SK (1992) Purification and partial characterization of 2 extracellular keratinases of Scopulariopsis brevicaulis. Mycopathology 119:161–165.  https://doi.org/10.1007/BF00448814 CrossRefGoogle Scholar
  161. Manczinger L, Rozs M, Vagvolgyi C, Kevei F (2003) Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol 19:35–39.  https://doi.org/10.1023/A:1022576826372 CrossRefGoogle Scholar
  162. Manirujjaman M, Amin R, Nahid AA, Alam MS (2016) Isolation and characterization of feather degrading bacteria from poultry waste. Afr J Bacteriol 8(3):14–21Google Scholar
  163. Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE, Larson PL (2013) Synchrotron based chemical imaging reveals plumage patterns in a 150 million year old early bird. J Anal At Spectrom 28:1024–1030.  https://doi.org/10.1039/C3JA50077B CrossRefGoogle Scholar
  164. Marcondes NR, Taira CL, Vandresen DC, Svidzinski TIE, Kadowaki MK, Peralta RM (2008) New feather degrading filamentous fungi. Microb Ecol 56(1):13–17CrossRefGoogle Scholar
  165. Marshall RC, Gillespie JM (1977) The keratin proteins of wool, horn and hoof from sheep. Aust J Biol Sci 30:389–400CrossRefGoogle Scholar
  166. Martınez-Hernandez AL, VelascoSantos C (2012) Keratin fibers from chicken feathers: structure and advances in polymer composites. In: Dullaart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Hauppauge, pp 149–211Google Scholar
  167. Matikeviciene V, Masiliuniene D, Grigiskis S (2009) Degradation of keratin containing wastes by bacteria with keratinolytic activity. Environ Technol 1:284–289Google Scholar
  168. Mavis SG, John MHM (1976) Amino acid composition of human nail, as measured by gas liquid chromatography. Clin Chem 22(10):1608–1613Google Scholar
  169. Mazotto AM, de Melo ACN, Macrae A, Rosado AS, Peixoto R, Cedrola SML, Couri S, Zingali RB, Villa ALV, Rabinovitch L, Chaves JQ, Vermelho AB (2011) Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp. World J Microbiol Biotechnol 27:1355–1365CrossRefGoogle Scholar
  170. Miranda-Vilela AL, Botelho AJ, Muehlmann LA (2014) An overview of chemical straightening of human hair: technical aspects, potential risks to hair fibre and health and legal issues. Int J Cosmet Sci 36:2–11CrossRefGoogle Scholar
  171. Mishra M (2013) Role of eco-friendly agricultural practices in Indian agriculture development. Int J Agric Food Sci Techol 4(2):11–15Google Scholar
  172. Mitsuiki S, Ichikawa M, Oka T, Sakai M, Moriyama Y, Sameshima Y, Goto M, Furukawa K (2004) Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb Technol 34:482–489CrossRefGoogle Scholar
  173. Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, Kanouchi H, Oka T (2006) Degradation of PrP(Sc) by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 70:1246–1248CrossRefGoogle Scholar
  174. Mohamedin AH (1999) Isolation, identification and some cultural conditions of a protease—producing thermophilic Streptomyces strain grown on chicken feather as a substrate. Int Biodeterior Biodegradation 43:13–21CrossRefGoogle Scholar
  175. Monod M (2008) Secreted proteases from dermatophytes. Mycopathologia 166:285–294.  https://doi.org/10.1007/s11046-008-9105-4 CrossRefGoogle Scholar
  176. Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419.  https://doi.org/10.1078/1438-4221-00223 CrossRefGoogle Scholar
  177. Montero-Barrientos M, Rivas R, Velazquez E, Monte E, Roig MG (2005) Terrabacter terrae sp. nov., a novel actinomycete isolated from soil in Spain. Int J Syst Evol Microbiol 55:2491–2495CrossRefGoogle Scholar
  178. Moritz JS, Latshaw JD (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult Sci 8:79–86CrossRefGoogle Scholar
  179. Moyer AE, Zheng W, Schweitzer MH (2016) Keratin durability has implications for the fossil record: results from a 10 year feather degradation experiment. PlosOne 11(7):e0157699.  https://doi.org/10.1371/journal.pone.0157699 CrossRefGoogle Scholar
  180. Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium, characterization and application of enzyme in detergent formulation. Biochem Eng J 39:353–361CrossRefGoogle Scholar
  181. Mukherjee A, Rai S, Bordoloi N (2011) Biodegradation of waste chicken-feathers by an alkaline beta-keratinase (mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10- II. Int Biodeterior Biodegradation 65:1229–1237.  https://doi.org/10.1016/j.ibiod.2011.09.007 CrossRefGoogle Scholar
  182. Murdan S (2002) Drug delivery to the nail following topical application. Int J Pharm 236:1–26.  https://doi.org/10.1016/S0378-5173(01)00989-9 CrossRefGoogle Scholar
  183. Nagal S, Jain PC (2010) Feather degradation by strains of Bacillus isolated from decomposing feathers. Braz J Microbiol 41:196–200CrossRefGoogle Scholar
  184. Nam GW, Lee DW, Lee HS, Lee Lee NJ, Kim BJ, Choe EA (2002) Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolating keratinase producing thermophilic anaerobe. Arch Microbiol 178:538–547CrossRefGoogle Scholar
  185. Nayaka S, Vidyasagar GM (2013) Development of eco-friendly bio-fertilizer using feather compost. Annu Rev Plant Biol 2:238–244Google Scholar
  186. Nayaka S, Gireesh Babu K, Vidyasagar GM (2013) Purification and characterization of keratinase from hair-degrading Streptomyces albus. Int J Bioassays 2(03):599–604Google Scholar
  187. Negi M, Tsuboi R, Matsui T, Ogawa H (1984) Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol 83:32–36CrossRefGoogle Scholar
  188. Ningthoujam DS, Devi LJ, Devi PJ, Kshetri P, Tamreihao K, Mukherjee S, Devi SS, Betterson N (2016) Optimization of keratinase production by Amycolatopsis sp. Strain MBRL40 from a limestone habitat. J Bioprocess Biotech 6(5):1000282.  https://doi.org/10.4172/2155-9821.1000282 Google Scholar
  189. Noval JJ, Nickerson WJ (1959) Decomposition of native keratin by Streptomyces fradie. J Bacteriol 77:251–263Google Scholar
  190. Odetallah NH, Wang JJ, Garlich JD, Shih JCH (2003) Keratinase in starter diets improves growth of broiler chicks. Poult Sci 82:664–670.  https://doi.org/10.1093/ps/82.4.664 CrossRefGoogle Scholar
  191. Okoroma EA, Garelick H, Abiola O, Purchase D (2012) Identification and characterisation of a Bacillus licheniformis strain with profound keratinase activity for degradation of melanised feather. Int Biodeterior Biodegradation 74:54–60CrossRefGoogle Scholar
  192. Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Wind O, Abiola OO (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS ONE.  https://doi.org/10.1371/journal.pone.0068099 Google Scholar
  193. Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11CrossRefGoogle Scholar
  194. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:0962–0966Google Scholar
  195. Papadopoules MC, Boushy EI, Roodbeen AR, Ketalaars EH (1986) Purification and characterization of a keratinolytic serine proteases from Streptomyces albidoflavus. J Appl Environ Microbiol 65:2570–2576Google Scholar
  196. Papadopoulos MC (1989) Effect of processing on high-protein feedstuffs: a review. Biol Wastes 29:123–138.  https://doi.org/10.1016/0269-7483(89)90092-X CrossRefGoogle Scholar
  197. Paul T, Das A, Mandal A, Suman K, Halder SK, Jana A, Maity C, Das Mohapatra PK, Pati BR, Mondal KC (2014) An efficient cloth cleaning properties of a crude keratinase combined with detergent: towards industrial viewpoint. J Clean Prod 66:672–684.  https://doi.org/10.1016/j.jclepro.2013.10.054 CrossRefGoogle Scholar
  198. Peng CY, Hong XF, Jing Y, Jing-Hua LU, Shi-Jun Q (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128CrossRefGoogle Scholar
  199. Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromol 10:1–8CrossRefGoogle Scholar
  200. Poopathi P, Krishnaraj T, Chinnasamy M, Ragul K (2014) Purification and characterization of keratinase from feather degrading bacterium useful for mosquito control—a new report. Trop Biomed 31(1):97–109Google Scholar
  201. Priyanga V (2016) Physiological and nutritional factors affecting synthesis of extracellular metalloproteases by Clostridium bifermentans. South Asian J Eng Technol 2(24):101–109Google Scholar
  202. Pugh GJF, Evans MD (1970) Keratinophilic fungi associated with birds. I. Fungi isolated from feathers, nests and soils. Trans Br Mycol Soc 54:233–240CrossRefGoogle Scholar
  203. Puhl AA, Brent Selinger L, McAllister TA, Douglas Inglis G (2009) Actinomadura keratinilytica sp. nov., a keratin degrading actinobacterium isolated from bovine manure compost. Int J Syst Evol Microbiol 59:828–834CrossRefGoogle Scholar
  204. Radha S, Gunasekaran P (2007) Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol 103:1301–1310CrossRefGoogle Scholar
  205. Rai SK, Mukherjee AK (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem Eng J 48:172–180CrossRefGoogle Scholar
  206. Rai S, Vishwakarma Y (2011) Study of keratin degradation by some potential bacterial isolates from soil. J Soil Sci 1(1):01–03Google Scholar
  207. Rai S, Konwarh R, Mukherjee A (2009) Purification, characterization and biotechnological application of an alkaline beta-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken- feather as substrate. Biochem Eng J 45:218–225.  https://doi.org/10.1016/j.bej.2009.04.001 CrossRefGoogle Scholar
  208. Rajput R, Sharma R, Gupta R (2010) Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Res 2010:32148-7.  https://doi.org/10.4061/2010/132148 CrossRefGoogle Scholar
  209. Ramakrishnaiah G, Mustafa SM, Srihari G (2013) Studies on keratinase producing fungi isolated from poultry waste and their enzymatic activity. J Microbiol Res 3(4):148–151Google Scholar
  210. Rapp D, Potier P, Jocteur-Monrozier L, Richaume A (2006) Prion degradation in soil: possible role of microbial enzyme simulated by the decomposition of buried carcasses. J Environ Sci Technol 40:6324–6329CrossRefGoogle Scholar
  211. Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408.  https://doi.org/10.1007/s007920100209 CrossRefGoogle Scholar
  212. Riffel A, Brandelli A (2006) Keratinolytic bacteria isolated from feather waste. Braz J Microbiol 37:395–399CrossRefGoogle Scholar
  213. Riffel A, Lucas FS, Heeb P, Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179(4):258–265CrossRefGoogle Scholar
  214. Riffle A, Brandelli A (2002) Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J Ind Microbiol Biotechnol 29:255–258.  https://doi.org/10.1038/sj.jim.7000307 CrossRefGoogle Scholar
  215. Rissen S, Antranikian G (2001) Isolation of thermoanaerobacter keratinophilus, a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extemophiles 5:399–408CrossRefGoogle Scholar
  216. Robbins CR, Kelly CH (1970) Amino acid composition of human hair. Text Res J 40:891–896CrossRefGoogle Scholar
  217. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014CrossRefGoogle Scholar
  218. Rozs M, Manczinger L, Vagvolgi CS, Kevei F (2001) Screening of trypsin like thio protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett 205:221–224CrossRefGoogle Scholar
  219. Saha S, Dhanasekaran D (2010) Isolation and Screening of keratinolytic actinobacteria form keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Curr Res J Biol Sci 2:124–131Google Scholar
  220. Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain KR2. J Appl Microbiol 89:735–743CrossRefGoogle Scholar
  221. Sankar GG, Lakshmi SS, Prabhakar T, Kumari PVK (2014) Screening, partial purification and characterization of keratinase from newly isolated marine fungi. Int J Pharm Rev Res 24(2):257–262Google Scholar
  222. Santos RMDB, Firmino AAP, deSa CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigates Fresenius. Curr Microbiol 33:364–370CrossRefGoogle Scholar
  223. Saravanan K, Kannappan S, Bhaarathi D (2012) Exploration of amino acid content and morphological structure in chicken feather fiber. J Text Appar Technol Manage 7(3):1–6Google Scholar
  224. Saritha A, Neeraj W (2010) Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping Site at Ghazipur Poultry Processing Plant. Int J Poult Sci 9:482–489CrossRefGoogle Scholar
  225. Sarkar P, Dutta E, Sen P, Banerjee R (2012) Isolation and molecular characterization of extracellular keratinase from Xanthomonas sp: a potential approach in feather waste management. Asian J Sci Appl Technol 1(1):37–46Google Scholar
  226. Saunders SE, Jason C, Bartz JC, Vercauteren CC, Bartelt-Hunt SL (2011) An enzymatic treatment of soil-bound prions effectively inhibits replication. Appl Environ Microbiol 77:4313–4317CrossRefGoogle Scholar
  227. Schmidt WF (2002) Microcrystalline keratin: from feathers to composite products. In: Wallenberger FT, Weston NE, Ford R, Wool RP, Chawla K (eds) Proceedings of the material research symposium. December 2–6, 2002. Boston, Massachusetts, pp U1.5.1–U1.5.5Google Scholar
  228. Schrooyen PMM, Dijkstra PJ, Oberthur RC, Bantjes A, Feijen J (2001) Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J Colloid Interface Sci 240(1):30–39CrossRefGoogle Scholar
  229. Schweitzer MH (2011) Soft tissue preservation in terrestrial mesozoic vertebrates. Annu Rev Earth Planet Sci 39:187–216.  https://doi.org/10.1146/annurev-earth-040610-133502 CrossRefGoogle Scholar
  230. Schweitzer MH, Watt JA, Avci R, Knapp L, Chiappe L, Norell M (1999) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J Exp Zool 285:146–157.  https://doi.org/10.1002/(sici)1097-010x(19990815)285:2<146:aidjez7>3.0.co;2-a CrossRefGoogle Scholar
  231. Selvam K, Vishnupriya B (2012) Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int J Pharm Biol Sci Arch 3:267–275Google Scholar
  232. Selvam K, Vishnupriya B, Yamuna M (2013) Isolation and description of keratinase producing marine actinobacteria from South Indian Coastal Region. Afr J Biotechnol 12(1):19–26CrossRefGoogle Scholar
  233. Shadzi S, Chadeganipour M, Alimoradi M (2002) Isolation of keratinophilic fungi from elementary schools and public parks in Isfahan, Iran. Mycoses 45(11–12):496–499Google Scholar
  234. Shanmugam CSV, Kumar TS (2010) Screening and characterization of keratinase from Bacillus licheniformis isolated from Namakkal poultry farm. Researcher 2:89–96Google Scholar
  235. Sharma R, Sharma M (2011) Keratinase activity of dermatophytes and yeast species for poultry waste and waste water treatment. Omics Appl Biotechnol 3:19–22Google Scholar
  236. Sharma V, Sharma A, Seth R (2016) Effect of temperature and pH variations on growth pattern of keratinophilic fungi from Jaipur, India. Entomol Appl Sci Lett 3(5):177–181Google Scholar
  237. Shih JCH (1993) Recent development in poultry waste digestion and feather utilization—a review. Poult Sci 72:1617–1620CrossRefGoogle Scholar
  238. Shih JCH (2002) Method and composition for sterilizing surgical instruments. US Patent application US 2002/0192731Google Scholar
  239. Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, VanDyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128CrossRefGoogle Scholar
  240. Singh I, Kushwaha RKS (2015) Keratinases and microbial degradation of keratin. Adv Appl Sci Res 6(2):74–82Google Scholar
  241. Spyros T (2003) Use of dual compartment mixing container for enzyme mixture useful to treat acne. Patent US6627192Google Scholar
  242. Steinert PM, Wantz ML, Idler WW (1982) O-phosphoserine content of intermediate filament subunits. Biochem 21:177–183CrossRefGoogle Scholar
  243. Su C, Gong JS, Zhang RX, Tao LY, Dou WF, Zhang DD, Li H, Lu ZM, Xu ZH, Shi JS (2017) A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol 95:404–411CrossRefGoogle Scholar
  244. Suntornsuk W, Suntornsukl L (2003) Feather degradation by Bacillus sp. FK46 in submerged cultivation. Bioresour Technol 86(3):239–243CrossRefGoogle Scholar
  245. Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81CrossRefGoogle Scholar
  246. Swetlana N, Jain PC (2010) Feather degradation by strains of Bacillus isolated from decomposing feathers. Braz J Microbiol 41:196–200CrossRefGoogle Scholar
  247. Syed DG, Lee JC, Li W, Kim C, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol 100:1868–1871.  https://doi.org/10.1016/j.biortech.2008.09.047 CrossRefGoogle Scholar
  248. Szabo I, Benedek A, Szabo IM, Barabas G (2000) Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J Microbiol Biotechnol 16:253–255CrossRefGoogle Scholar
  249. Takami H, Nogi Y, Horikoshi K (1999) Reidentification of the keratinase-producing facultative alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles 3(4):293–296.  https://doi.org/10.1007/s007920050130 CrossRefGoogle Scholar
  250. Thanh TQT, Hong TNT, Minh DBT (2014) Isolation and selection of feather-degrading aerobic bacteria from poultry processing plants in Mekong Delta of Vietnam. Nova J Med Biol Sci 3(4):1–6CrossRefGoogle Scholar
  251. Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A (2004) Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 39:181–186CrossRefGoogle Scholar
  252. Tiquia SM, Ichida JM, Keener HM, Elwell DL, Burtt EH Jr, Michel FC Jr (2005) Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Environ Biotechnol 67:412–419CrossRefGoogle Scholar
  253. Tiwary E, Gupta R (2010) Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Bioresour Technol 101:6103–6110CrossRefGoogle Scholar
  254. Tomlinson DJ, Muelling CM, Fakler TM (2004) Formation of keratins in the bovine claw: roles of hormones, minerals and vitamins in functional claw integrity. J Dairy Sci 87:797–809CrossRefGoogle Scholar
  255. Tork S, Aly MM, Nawar L (2010) Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21. Asian J Microbiol Biotechnol 2(1):1–13CrossRefGoogle Scholar
  256. Torka SE, Shaheinb YE, El-Hakimb AE, Abdel-Atyb AM, Alyafa MM (2016) Purification and partial characterization of serine-metallo keratinasefrom a newly isolated Bacillus pumilus NRC21. Biol Int J Biol Macromol 86:189–196CrossRefGoogle Scholar
  257. Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E, Nedkov P, Gousterova A, Cueff V, Godfroy A, Barbier G, Metro F, Chobert JM, Clayette P, Dormont D, Grosclaude J, Haertle T (2004) Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and Streptomyces subspecies. J Agric Food Chem 52:6353–6360CrossRefGoogle Scholar
  258. Umamaheswari S, Parameswari N, Prasanth AD (2016) Screening of proteolytic activity of dermatophytes on different media. Asian J Sci Technol 7(2):2388–2391Google Scholar
  259. Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S (2016) Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front Microbiol 7:1189Google Scholar
  260. Villa ALV, Aragao MRS, dos Santos EP, Mazotto AM, Zingali RB, de Souza EP, Vermelho AB (2013) Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fibre. BMC Biotechnol 13:15CrossRefGoogle Scholar
  261. Voet D, Voet JG (1995) In: Stiefel J (ed) Biochemistry, 2nd edn. Wiley, New York, pp 154–156Google Scholar
  262. Walker ID, Rogers GE (1976) Differentiation in avian keratinocytes. Eur J Biochem 69:329–339.  https://doi.org/10.1111/j.1432-1033.1976.tb10917.x CrossRefGoogle Scholar
  263. Wang X, Parsons CM (1997) Effect of processing systems on protein quality of feather meal and hog hair meal. Poult Sci 76:491–496CrossRefGoogle Scholar
  264. Wawrzkiewicz K, Łobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophyton gallinae. J Med Vet Mycol 25:261–268CrossRefGoogle Scholar
  265. Weary PE, Canby CM, Cowley EP (1965) Keratinolytic activity of Microsporum canis and Microsporum gypseum. J Invest Dermatol 44:300–331CrossRefGoogle Scholar
  266. Werlang PO, Brandelli A (2005) Characterization of a novel feather-degrading Bacillus sp. strain. Appl Biochem Biotechnol 120:71–80CrossRefGoogle Scholar
  267. Williams CM, Richter CS, Mackenzie JM, Shih JCH (1990) Isolation identification and characterization of a feather degrading bacterium. Appl Environ Microbiol 56:1509–1515Google Scholar
  268. Xu S, Reuter T, Gilroyed BH, Dudas S, Graham C, Neumann NF, Balachandran A, Czub S, Belosevic M, Leonard JJ, McAllister TA (2013) Biodegradation of specified risk material and fate of scrapie prions in compost. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:26–36.  https://doi.org/10.1080/10934529.2012.707599 CrossRefGoogle Scholar
  269. Xu H, Shi Z, Reddy N, Yang Y (2014a) Intrinsically water-stable keratin nanoparticles and their in vivo biodistribution for targeted delivery. J Agric Food Chem 62:9145–9150CrossRefGoogle Scholar
  270. Xu S, Reuter T, Gilroyed B, Mitchell G, Price L, Dudas S, Braithwaite S, Graham C, Czub S, Leonard J, Balachandran A, Neumann N, Belosevic M, McAllister T (2014b) Biodegradation of prions in compost. Environ Sci Technol 48(12):6909–6918.  https://doi.org/10.1021/es500916v CrossRefGoogle Scholar
  271. Yamamura S, Morita Y, Hasan Q, Yokoyama K, Tamiya E (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294(5):1138–1143CrossRefGoogle Scholar
  272. Yang Y (2012) Skin-whitening and freckle-dispelling essence and preparation method thereof. Patent Cn102612104Google Scholar
  273. Yin XC, Li FY, He YF, Wang Y, Wang RM (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1:528–536CrossRefGoogle Scholar
  274. Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Mirayama Y (2007) Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 102(2):509–515CrossRefGoogle Scholar
  275. Yue XY, Zhang B, Jiang DD, Liu YJ, Niu TG (2011) Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechnol 27:2147–2153CrossRefGoogle Scholar
  276. Zhang RX, Gongc JS, Suc C, Zhangc DD, Tianc H, Douc WF, Lic H, Shic JS, Xua ZH (2016a) Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol 93:843–851CrossRefGoogle Scholar
  277. Zhang RX, Gong JS, Dou WF, Zhang DD, Zhang YX, Li H, Lu ZM, Shi JS (2016b) Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry. Chem Pap 70:1460–1470.  https://doi.org/10.1515/chempap-2016-0086 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Basic SciencesDr. YS Parmar University of Horticulture and ForestryNauni, SolanIndia

Personalised recommendations