Skip to main content

Advertisement

Log in

Composting parameters and compost quality: a literature review

  • Published:
Organic Agriculture Aims and scope Submit manuscript

Abstract

Economic growth and rising food consumption in the world have led to increased production of organic wastes due to an important intensification of the agricultural production systems. The analysis of macro elements (nitrogen [N], phosphorus [P], and potassium [K]) in organic wastes reveals that the economic loss is significant with the intensification of the agricultural system. The good management of those wastes would be an effective means of organic matter restoration through carbon restitution to the depleted soils through organic amendments. Composting is a type of waste processing that has gained increasing acceptance over the years. As a rule, the process consists of the natural biological decomposition of organic waste components and involves diverse species of microorganisms. Those organic residues could reconstitute soils and be an important fertilization backup. Composts prepared from different organic wastes differ in their quality and stability, which further depends upon the composition of raw material used for the compost production. Compost quality is closely related to its stability and maturity. The wide variety of chemical and biological variations that occur during composting, and the range of methods suggested in literature, has made it difficult to agree on methods for the practical assessment of maturity. A literature review of the main start-up, monitoring and maturity parameters are discussed concerning different raw materials used and different composting methods practiced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adani F, Genevini P, Tambone F (1995) A new index of organic matter stability. Compost Science & Utilization 3(2):25–37

    Article  Google Scholar 

  • Adani F, Genevini P, Gasperi F, Tambone F (1999) Composting and humification. Compost Sci Util 7(1):24–33

    Article  Google Scholar 

  • Adani F, Ubbiali C, Generini P (2006) The determination of biological stability of composts using the dynamic respiration index: the results of experience after two years. Waste Manag 26(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Agnew J, Leonard J (2003) The physical properties of compost. Compost Sci Util 11(3):238–264

    Article  Google Scholar 

  • Ahn H, Richard T, Glanville T (2008) Laboratory determination of compost physical parameters for modeling of airflow characteristics. Waste Manag 28(3):660–670

    Article  CAS  PubMed  Google Scholar 

  • Albrecht R (2007) Co-compostage de boues de station d’épuration et de déchets verts : Nouvelle méthodologie du suivi des transformations de la matière organique. Dissertation, Faculté des Sciences et Technique St Jérôme, L’Université Paul Cézanne, Marseille, France, p. 189

  • Albrecht R, Joffre R, Petit J, Terrom G, Périssol C (2009) Calibration of chemical and biological changes in co-composting of biowastes using near-infrared spectroscopy. Environ Sci Technol Lett 43(3):804–811

    Article  CAS  Google Scholar 

  • Alburquerque J, Gonzálvez J, García D, Cegarra J (2006) Measuring detoxification and maturity in compost made from “Alperujo”, the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere 64(3):470–477

    Article  CAS  PubMed  Google Scholar 

  • Amir S (2005) Contribution à la valorisation de boues de stations d’épuration par compostage : devenir des micropolluants métalliques et organiques et bilan humique du compost, Thèse de Doctorat, Ecole Nationale Supérieure Agronomie, Institut National Polytechnique (ENSAT-INP), Toulouse, France, p. 341

  • Antizar-Ladislao B, Lopez-Real J, Beck A (2006) Investigation of organic matter dynamics during in-vessel composting of an aged coal–tar contaminated soil using fluorescence excitation–emission spectroscopy. Chemosphere 64(5):839–847

    Article  CAS  PubMed  Google Scholar 

  • Avnimelech Y, Bruner M, Ezrony I, Sela R, Kochba M (1996) Stability indexes for municipal solid waste compost. Compost Sci Util 4(2):13–20

    Article  Google Scholar 

  • Ayuso M, Pascual J, García C, Hernández T (1996) Evaluation of urban wastes for agricultural use. Soil Sci Plant Nutr 42(1):105–111

    Article  CAS  Google Scholar 

  • Azim K, Ouyihya K, Amellouk A, Perissol C, Thami-Alami I and Soudi B (2014) Dynamic composting optimization through C/N ratio variation as a startup parameter. In: Rahmann, G. and Aksoy, U. (Eds.) Building Organic Bridges, Johann Heinrich von Thünen-Institut, Braunschweig, Germany, 3, Thuenen Report, no. 20, pp. 787–790. http://orgprints.org/23554/1/23554_MM.pdf (Accessed 20 February 2017).

  • Azim K, Komenane S, Soudi B (2017) Agro-environmental assessment of composting plants in southwestern of Morocco (Souss-Massa region). Int J Recycl Org Waste Agricult. doi:10.1007/s40093-017- 0157-7

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Beck-Friis B, Smars S, Jönsson H, Eklind Y, Kirchmann H (2003) Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics. Compost Sci Util 11(1):41–50

    Article  Google Scholar 

  • Bernal M, Navarro A, Sánchez-Monedero M, Roig A, Cegarra J (1998) Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biol Biochem 30(3):305–313

    Article  CAS  Google Scholar 

  • Bidlingmaier W (1993) Odour emissions from composting plants. Compost Sci Util 1(4):64–68

    Article  Google Scholar 

  • Boulter-Bitzer J, Trevors J, Boland G (2006) A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Appl Soil Ecol 34(1):65–81

    Article  Google Scholar 

  • Brinton WF and Evans E (2000) Plant Performance in Relation to Oxygen Depletion, CO2-Rate and Volatile Fatty Acids in Container Media Composts of Varying Maturity. In: Insam H, Riddech N and Klammer S (eds) Microbiology of Composting, XII edn. Springer, pp 335–343.

  • Brinton WF, Evans E, Droffner ML, Brinton RB (1995) Standardized test for evaluation of compost self- heating. Biocycle 36:64–69

    CAS  Google Scholar 

  • Brown S, Subler S (2007) Composting and greenhouse gas emissions: a Producer’s perspective. Biocycle 48(3):37–41 https://www.biocycle.net/2007/03/23/composting-and-greenhouse-gas-emissions-a-producersperspective/ (Accessed 06 February 2017

    Google Scholar 

  • Canet R, Pomares F (1995) Changes in physical, chemical and physico-chemical parameters during the composting of municipal solid wastes in two plants in Valencia. Bioresour Technol 51(2–3):259–264

    Article  CAS  Google Scholar 

  • Castaldi P, Alberti G, Merella R, Melis P (2005) Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manag 25(2):209–213

    Article  CAS  PubMed  Google Scholar 

  • Cayuela M, Sánchez-Monedero M, Roig A (2006) Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochem 41(3):616–623

    Article  CAS  Google Scholar 

  • Changa C, Wang P, Watson M, Hoitink H, Michel F (2003) Assessment of the reliability of a commercial maturity test kit for composted manures. Compost Sci Util 11(2):125–143

    Article  Google Scholar 

  • Charnay F (2005) Compostage des déchets urbains dans les Pays en Développement. Elaboration d’une démarche méthodologique pour une production pérenne de compost. Dissertation, University of Limoges, p. 277

  • Chefetz B, Hatcher P, Hadar Y, Chen Y (1996) Chemical and biological characterization of organic matter during composting of municipal solid waste. J Environ Qual 25(4):776

    Article  CAS  Google Scholar 

  • Chen Y (2003) Nuclear magnetic resonance, infra-red and pyrolysis: application of spectroscopic methodologies to maturity determination of composts. Compost Sci Util 11(2):152–168

    Article  Google Scholar 

  • Chen Y and Aviad T (1990) Effect of humic substances on plant growth. In MacCarthy P, Clapp CE, Malcolm RL, Bloom PR et al. (eds) Humic substances in soil and crop sciences: Selected readings, American Society of Agronomy, Madison, WI), pp 161–186.

  • Chen Y, Magen H, Riov J (1994) Humic substances originating from rapidly decomposition organic matter: properties and effects on plant growth. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implication on human Health. Elsevier Science B.V, London, pp 427–445

    Google Scholar 

  • Choi K (1999) Optimal operating parameters in the composting of swine manure with wastepaper. J Environ Sci Health 34(6):975–987. doi:10.1080/03601239909373240

    Article  CAS  Google Scholar 

  • De Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manag Res 1(1):157–176

    Article  CAS  Google Scholar 

  • Deiana S, Gessa C, Manunza B, Rausa R, Seeber R (1990) Analytical and spectroscopic characterization of humic acids extracted from sewage sludge, manure, and worm compost. Soil Sci 150(1):419–424

    Article  CAS  Google Scholar 

  • Diaz-Burgos M, Ceccanti B, Polo A (1993) Monitoring biochemical activity during sewage sludge composting. Biol Fertil Soils 16(2):145–150

    Article  CAS  Google Scholar 

  • Eklind Y, Kirchmann H (2000) Composting and storage of organic household waste with different litter amendments. I: carbon turnover. Bioresour Technol 74(2):115–124

    Article  CAS  Google Scholar 

  • El Fels L, Lemee L, Ambles A, Hafidi M (2014) Identification and biotransformation of lignin compounds during co-composting of sewage sludge-palm tree waste using pyrolysis-GC/MS. Int Biodeterior Biodegradation 92:26–35

    Article  CAS  Google Scholar 

  • Fang M, Wong J (1999) Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ Pollut 106(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • FCQAO (1994) Methods book for the analysis of compost. Compost information N°230. BGK ed. https://www.kompost.de/fileadmin/docs/shop/Grundlagen_GS/Methods_Book_2002.pdf (Accessed 23 February 2017)

  • Ferrer J (2001) Agronomic use of biotechnologically processed grape wastes. Bioresour Technol 76(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Finstein MS, Strom PF, Hogan JA, Cowan RM (1999) Composting on Mars or the moon: I. Comparative evaluation of process design alternatives. Life Support Biosph Sci 6(3):169–179

    CAS  PubMed  Google Scholar 

  • Forster J, Zech W, Wurdinger E (1993) Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biol Fertil Soils 16(2):93–99

    Article  CAS  Google Scholar 

  • Francou C (2003) Stabilisation de la matière organique au cours du compostage de déchets urbains : Influence de la nature des déchets et du procédé de compostage – Recherche d’indicateurs pertinents. Dissertation, Institut national agronomique Paris- Grignon, p. 289

  • Fuangworawong P (2008) Influence of Nitrogen Sources, Molasses Addition and Aeration Schemes on Composting of Coir Pith. Dissertation, King Mongkut’s University of Technology Thonburi.

  • Gagnon B, Simard RR, Robitaille R, Goulet M, Rioux R (1997) Effect of composts and inorganic fertilizers on spring wheat growth and N uptake. Can J Soil Sci 77:487–495

    Article  Google Scholar 

  • Gigliotti G, Proietti P, Said-Pullicino D, Nasini L, Pezzolla D, Rosati L, Porceddu P (2012) Cocomposting of olive husks with high moisture contents: organic matter dynamics and compost quality. Int Biodeterior Biodegradation 67:8–14

    Article  CAS  Google Scholar 

  • Ginting D, Kessavalou A, Eghball B, Doran J (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications. J Environ Qual 32(1):23

    Article  CAS  PubMed  Google Scholar 

  • Golouke CG (1991) Principles of composting. In: Biocycle Guide to the Art and Science of Composting, pp. 14–37.

  • Goyal S, Dhull S, Kapoor K (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96(14):1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Grigatti M (2004) Evolution of organic matter from sewage sludge and garden trimming during composting. Bioresour Technol 91(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Grigatti M, Cavani L, Ciavatta C (2011) The evaluation of stability during the composting of different starting materials: comparison of chemical and biological parameters. Chemosphere 83(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Inoko A, Tadaki M, Izawa T (1981) Maturing process of city refuse compost during piling. Soil Sci Plant Nutr 27(3):357–364

    Article  Google Scholar 

  • Hartz TK, Giannini C (1998) Duration of composting of yard wastes affects both physical and chemical characteristics of compost and plant growth. Hort Science 33, 7:1192–1196

    Google Scholar 

  • Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterization during composting of municipal solid waste. Bioresour Technol 80(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • He Y, Inamori Y, Mizuochi M, Kong H, Iwami N, Sun T (2000) Measurements of N2O and CH4 from aerated composting of food waste. Sci. Total Environ 254:65–74

    Article  CAS  Google Scholar 

  • Helfrich P, Chefetz B, Hadar Y, Chen Y, Schnabl H (1998) A novel method for determining phytotoxicity in composts. Compost Sci Util 6(3):6–13

    Article  Google Scholar 

  • Hirai M, Katayama A, Kubota H (1986) Effect of compost maturity on plant growth. Biocycle 27(4):58–61

    Google Scholar 

  • Houot S (2002) Gestion des déchets organiques hors effluents d’élevage et résidus de récoltes. In Stocker du carbone dans les sols agricoles de France. Rapport d’expertise réalisé par l’INRA à la demande du Ministère del’Ecologie et du Développement Durable, edited by INRA ed.148–152

  • Huang G, Wu Q, Wong J, Nagar B (2006) Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour Technol 97(15):1834–1842

    Article  CAS  PubMed  Google Scholar 

  • Iannotti D, Grebus M, Toth B, Madden L, Hoitink H (1994) Oxygen Respirometry to assess stability and maturity of composted municipal solid waste. J Environ Qual 23(6):1177

    Article  CAS  Google Scholar 

  • Iglesias-Jimenez E, Alvarez C (1993) Apparent availability of nitrogen in composted municipal refuse. Biol Fertil Soils 16(4):313–318

    Article  CAS  Google Scholar 

  • Iglesias-Jimenez E, Perez-Garcia V (1989) Evaluation of city refuse compost maturity: a review. Biol Waste 27:115–142

    Article  CAS  Google Scholar 

  • Iglesias-Jimenez E, Perez-Garcia V (1991) Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation exchange capacity. Resour Conserv Recy 6(1):45–60

    Article  Google Scholar 

  • Jedidi N, Van-Cleemput O, M’Hiri A (1995) Quantification des processus de minéralisation et d’organisation de l’azote dans un sol en présence d’amendements organiques. Can J of Soil Sci 75:85–91

    Article  Google Scholar 

  • Jouraiphy A, Amir S, El Gharous M, Revel J, Hafidi M (2005) Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int Biodeterior Biodegradation 56(2):101–108

    Article  CAS  Google Scholar 

  • Kaiser M (1983) L’analyse de la microbiologie du compost. 1ère partie. Compost information 12:9–13

    Google Scholar 

  • Kapetanios E, Loizidou M, Valkanas G (1993) Compost production from Greek domestic refuse. Bioresour Technol 44(1):13–16

    Article  CAS  Google Scholar 

  • Khater E (2015) Some physical and chemical properties of compost. International Journal of Waste Resources 05(01)

  • Kostov O, Petkova G, Van Cleemput O (1994) Microbial indicators for sawdust and bark compost stability and humification processes. Bioresour Technol 50(3):193–200

    Article  CAS  Google Scholar 

  • Kumar M, Ou Y, Lin J (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Manag 30(4):602–609

    Article  CAS  PubMed  Google Scholar 

  • Larsen K, McCartney D (2000) Effect of C/N ratio on microbial activity and N retention: bench-scale study using pulp and paper Biosolids. Compost Sci Util 8(2):147–159

    Article  Google Scholar 

  • Lasaridi K, Stentiford E (1998) A simple respirometric technique for assessing compost stability. Water Res 32(12):3717–3723

    Article  CAS  Google Scholar 

  • Lasaridi K, Protopapa I, Kotsou M, Pilidis G, Manios T, Kyriacou A (2006) Quality assessment of composts in the Greek market: the need for standards and quality assurance. J Environ Manag 80(1):58–65.5

    Article  CAS  Google Scholar 

  • Leifeld J, Siebert S, Kögel-Knabner I (2001) Stabilization of composted organic matter after application to a humus-free Sandy Mining soil. J Environ Qual 30(2):602

    Article  CAS  PubMed  Google Scholar 

  • Makan A, Assobhei O, Mountadar M (2013) Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iranian J Environ Health Sci Eng 10(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbuligwe S, Kassenga G, Kaseva M, Chaggu E (2002) Potential and constraints of composting domestic solid waste in developing countries: findings from a pilot study in Dar Es-salaam, Tanzania. Resour Conserv Recy 36(1):45–59

    Article  Google Scholar 

  • McKinley V, Vestal J (1985) Effects of different temperature regimes on microbial activity and biomass in composting municipal sewage sludge. Can J Microbiol 31(10):919–925

    Article  Google Scholar 

  • Michel F, Reddy C (1998) Effect of oxygenation level on yard trimmings composting rate, odor production, and compost quality in bench-scale reactors. Compost Sci Util 6(4):6–14

    Article  Google Scholar 

  • Mondini C, Fornasier F, Sinicco T (2004) Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol Biochem 36(10):1587–1594

    Article  CAS  Google Scholar 

  • Morel JL (1982) L’évaluation de la maturité des composts urbains par une méthode colorimétrique. Compost Information, 10, 4–8. https://www.researchgate.net/publication/265825882_L%27evaluation_de_la_maturite_des_composts_par_une_ methode_colorimetrie (Accessed 14 February 2017).

  • Mustin M (1987) Le compost : La gestion de la matière organique. Francois Dubusc, Paris. p. 954

  • Namkoong WE, Hwang Y, Cheong JG, Choi JY (1999) A comparative evaluation of maturity parameters for food waste composting. Compost Sci Util 7:55–62

    Article  Google Scholar 

  • Nappi P, Barberis R (1993) Compost as growing medium: chemical, physical and biological aspects. Acta Hortic 342:249–256

    Article  Google Scholar 

  • Navarro A, Cegarra J, Roig A, Garcia D (1993) Relationships between organic matter and carbon contents of organic wastes. Bioresour Technol 44(3):203–207

    Article  CAS  Google Scholar 

  • N’Dayegamiye A, Goulet M, Laverdière M (1997) Effet à long terme d’apports d’engrais minéraux et de fumier sur les teneurs en C et en N des fractions densimétriques et des agrégats du loam limoneux Le Bras. Can J Soil Sci 77(3):351–358

    Article  Google Scholar 

  • Nicolardot B, Chaussod R, Morel JL, Guckert A, Benistant D, Catroux G, Germon JC (1986) Appréciation simple de la maturité des composts urbains en relation avec les effets sur la production végétale. Agronomie 6:819–827

    Article  Google Scholar 

  • Papendick RI and Campbell GS (1981) Theory and measurement of water potential. In: Parr JF, Gardner WR and Elliott LF (eds.) Water Potential Relations in Soil Microbiology, SSSA special publication. Wis. U.S.A. Soil Sci Soc Am J: Madison, 9:1–22

  • Paré T, Dinel H, Schnitzer M, Dumontet S (1998) Transformations of carbon and nitrogen during composting of animal manure. Biol Fertil Soils 26:173–178

    Article  Google Scholar 

  • Parr JF, Hornick SB, and Kaufman DD (1994) Use of Microbial Inoculants and Organic Fertilizers in Agricultural Production. Food and Fertilizer Technology Center for Asian and Pacific Region (Publication Database). Extension Bulletin. http://www.fftc.agnet.org/library.php?func=view&style=type&id=20110722114739 (Accessed 14 February 2017).

  • Pichler M, Kögel-Knabner I (2000) Chemolytic analysis of organic matter during aerobic and anaerobic treatment of minicipal solid waste. J Environ Qual 29:1337–1344

    Article  CAS  Google Scholar 

  • Poincelot RP (1972) Biochemistry and methodology of composting. Connecticut Experiment Station Bull, 727: 1–38. https://archive.org/details/biochemistrymeth00poin (Accessed 17 February 2017).

  • Provenzano M, Senesi N, Piccone G (1998) Thermal and spectroscopic characterization of composts from municipal solid wastes. Compost Sci Util 6(3):67–73

    Article  Google Scholar 

  • Razmjoo P, Pourzamani H, Teiri H and Hajizadeh Y (2015) Determination of an empirical formula for organic composition of mature compost produced in Isfahan-Iran composting plant in 2013. Int J Environ Health Eng 4:3. http://www.ijehe.org/text.asp?2015/4/1/3/153988 (Accessed 14 February 2017).

  • Riffaldi R, Levi-Minzi R, Pera A, de Bertoidi M (1986) Evaluation of compost maturity by means of chemical and microbial analyses. Waste Manag Res 4(1):387–396

    Article  CAS  Google Scholar 

  • Robertson F, Morgan W (1995) Mineralization of C and N in organic materials as affected by duration of composting. Australian Journal of Soil Research 33(3):511

  • Roletto E, Barberis R, Consiglio M, Jodice R (1985) Chemical parameters for evaluating compost maturity. Biocycle 26:46–47

    CAS  Google Scholar 

  • Roman P, Martinez MM and Pantoja A (2015) Farmer’s Compost Handbook: Experiences in Latin America. FAO Rome. ISBN: 978–92–5-107845-7. http://www.fao.org/3/a-i3388e.pdf (Accessed 06 February 2017).

  • Rynk, R. 1992. On-farm composting handbook (NRAES-54). Cooperative Extension. Ithaca, N.Y. p. 186

  • Saharinen M (1998) Evaluation of changes in CEC during composting. Compost Sci Util 6(4):29–37

    Article  Google Scholar 

  • Sanchez-Monedero M, Roig A, Paredes C, Bernal M (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour Technol 78(3):301–308

    Article  CAS  PubMed  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Riffaldi R (1988) Maturity evaluation of organic wastes. Biocycle 29:54–56

    Google Scholar 

  • Scaglia B, Tambone F, Genevini P, Adani F (2000) Respiration index determination: dynamic and static approaches. Compost Sci U 8(2):90–98

    Article  Google Scholar 

  • Schumann G, Soares H, Holden C, Switzenbaum M (1993) Relationship of traditional parameters of compost stability to turfgrass quality. Environ Technol 14(3):257–263

    Article  CAS  Google Scholar 

  • Serra-Wittling C (1995) Valorisation de composts d’ordures ménagères en protection des cultures : Influence de l’apport de composts sur le développement des maladies d’origine tellurique et le comportement de pesticides dans un sol. Dissertation, INA-PG, p. 220

  • Sharma V, Canditelli M, Fortuna F, Cornacchia G (1997) Processing of urban and agro-industrial residues by aerobic composting: review. Energ Convers Manage 38(5):453–478

    Article  CAS  Google Scholar 

  • Steel H, De La Peña E, Fonderie P, Willekens K, Borgonie G, Bert W (2010) Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia (Jena) 53(3):181–190

    Article  Google Scholar 

  • Strom PF (1985) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol. 50:4 899–905. http://aem.asm.org/content/50/4/899.full.pdf+html (Accessed 17 February 2017).

  • Sugahara K, Harada Y, Inoko A (1979) Color change of city refuse during composting process. Soil Sci Plant Nutr 25(2):197–208. doi:10.1080/00380768.1979.10433160 (Accessed 17 February 2017

    Article  Google Scholar 

  • Thomsen M, Lassen P, Dobel S, Hansen P, Carlsen L, Mogensen B (2002) Characterisation of humic materials of different origin: a multivariate approach for quantifying the latent properties of dissolved organic matter. Chemosphere 49(10):1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Tiquia S, Tam N (1998) Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour Technol 65(1–2):43–49

    Article  CAS  Google Scholar 

  • Tiquia S, Tam N (2000) Fate of nitrogen during composting of chicken litter. Environ Pollut 110(3):535–541

    Article  CAS  PubMed  Google Scholar 

  • Tiquia S, Tam N, Hodgkiss I (1997) Effects of turning frequency on composting of spent pig-manure sawdust litter. Bioresour Technol 62(1–2):37–42

    Article  CAS  Google Scholar 

  • Tripetchkul S, Pundee K, Koonsrisuk S, Akeprathumchai S (2012) Co-composting of coir pith and cow manure: initial C/N ratio vs physico-chemical changes. Int J Recycl Org Waste Agricult 1(1):15

    Article  Google Scholar 

  • Tuomela M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Vallini G, Pera A, Vadrighi M and Cecchi F (1993) Process constraints in source-collected vegetable waste composting. Water Sci Technol, 28, 2:229–236. https://www.researchgate.net/profile/Giovanni_Vallini/publication/263582162_Process_constraints_in_sourcecollected_ vegetable_waste_composting/links/53e4cd4d0cf25d674e94ee0d.pdf (Accessed 17 February 2017).

  • Veeken A, Nierop K, Wilde V, Hamelers B (2000) Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresour Technol 72(1):33–41

    Article  CAS  Google Scholar 

  • Vobrkov S, Vaverkova M, Adamcova D (2016) Enzyme production during composting of aliphatic–aromatic copolyesters in organic wastes. Environ Eng Sci. doi:10.1089/ees.2015.044

    Google Scholar 

  • Weppen P (2001) Process calorimetry on composting of municipal organic wastes. Biomass Bioenergy 21(4):289–299

    Article  CAS  Google Scholar 

  • Wichuk K, McCartney D (2013) Compost stability and maturity evaluation—a literature review. J Environ Eng Sci 8(5):601–620

    Article  Google Scholar 

  • Willson GB (1989) Combining raw materials for composting. BioCycle, 30:82–83. http://infohouse.p2ric.org/ref/33/32518.pdf (Accessed 17 February 2017).

  • Woodbury P, Breslin V (1992) Assuring compost quality: suggestions for facility managers, regulators, and researchers. Biomass Bioenergy 3(3–4):213–225

    Article  CAS  Google Scholar 

  • Wu L, Ma L, Martinez G (2000) Comparison of methods for evaluating stability and maturity of Biosolids compost. J Environ Qual 29(2):424

    Article  CAS  Google Scholar 

  • Yulipriyanto H (2001) Emission d’effluents gazeux lors du compostage de substrats organiques en relation avec l’activité microbiologique (Nitrification/Dénitrification). Dissertation, University Rennes. https://tel.archivesouvertes. fr/tel-00654701/document (Accessed 17 February 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azim, K., Soudi, B., Boukhari, S. et al. Composting parameters and compost quality: a literature review. Org. Agr. 8, 141–158 (2018). https://doi.org/10.1007/s13165-017-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13165-017-0180-z

Keywords

Navigation