Skip to main content
Log in

Evolutionary and Expression Analyses of Basic Zipper Transcription Factors in the Highly Homozygous Model Grape PN40024 (Vitis vinifera L.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Basic leucine zipper (bZIP) proteins, which function as transcription factors and play important regulatory roles in all eukaryotic organisms, have been identified and classified in plants based on the sequenced genomes of model species such as Arabidopsis thaliana and rice (Oryza sativa). However, far less is currently known about the evolutionary relationships and expression patterns of bZIP genes in nonmodel plants. In this study, we performed a genome-wide analysis and identified a total of 47 bZIP transcription factors from grape (Vitis vinifera L., cv PN40024). Phylogenetic analysis of grape bZIP transcription factors along with their Arabidopsis and rice counterparts indicated that they can be classified into 13 different groups. Furthermore, evolutionary analysis of the grape bZIP transcription factors demonstrated that segmental duplications have contributed substantially to the expansion of this family in grape. In addition, synteny analysis between grape and Arabidopsis suggested that some of the bZIP members were present in their most recent common ancestor and that the major expansion occurred before the divergence of the two species. Gene expression analysis of the grape bZIP transcription factor-encoding genes revealed tissue-specific, biotic and abiotic stress and hormone-responsive expression profiles. Taken together, the genome-wide identification and characterization of grape bZIP transcription factors provide insights into their evolutionary history and a resource for further functional characterization in the context of crop improvement and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amoutzias G, Veron A, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver S, Robertson D (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24(3):827–835

    Article  CAS  PubMed  Google Scholar 

  • Büttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 94(11):5961–5966

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbosa EGG, Leite JP, Marin SRR, Marinho JP, Carvalho JFC, Fuganti-Pagliarini R, Farias JRB, Neumaier N, Marcelino-Guimarães FC, de Oliveira MCN (2013) Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Rep 31(3):719–730

    Article  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A 103(45):17042–17047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G (2012) Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep 31(2):311–321

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1):10

    Article  PubMed Central  PubMed  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153(3):1398–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Chuang C-F, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13(3):334–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corrêa LGG, Riaño-Pachón DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944

    Article  PubMed Central  PubMed  Google Scholar 

  • Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol Biol Evol 23(8):1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wang Y-B, Xie Y, Liang Z, Jiang S-J, Zhang S-S, Huang Y-B, Tang Y-X (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 20(5):437–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RB, Monteiro SS, Piçarra-Pereira MA, Teixeira AR (2004) Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotechnol 22(4):168–173

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183(3):557–564

    Article  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12):3470–3488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12(6):901–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao M, Wang Q, Wan R, Fei Z, Wang X (2012) Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization. Plant Physiol Biochem 58:253–268

    Article  CAS  PubMed  Google Scholar 

  • García MNM, Giammaria V, Grandellis C, Téllez-Iñón MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235(4):761–778

    Article  Google Scholar 

  • Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60(2):207–217

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Xu X, Carole B, Li X, Gao M, Zheng Y, Wang X (2013) Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics 14:554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He S, Shan W, Kuang J-f, Xie H, Xiao Y-y, Lu W-j, Chen J-y (2013) Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Org Cul 113(2):173–187

    Article  CAS  Google Scholar 

  • Hurst HC (1994) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101–168

    Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • Kang J-y, Choi H-i, Im M-y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14(2):343–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134(1):74–86

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338

    Article  CAS  PubMed  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acid Res 40(D1):D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li HE, Xu Y, Xiao Y, Zhu ZG, Xie XQ, Zhao HQ, Wang YJ (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232(6):1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141(4):1167–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao Y, Zou H-F, Wei W, Hao Y-J, Tian A-G, Huang J, Liu Y-F, Zhang J-S, Chen S-Y (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228(2):225–240

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Giorgi F, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11(1):719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281(31):22190–22199

    Article  CAS  PubMed  Google Scholar 

  • Meier I, Gruissem W (1994) Novel conserved sequence motifs in plant G-box binding proteins and implications for interactive domains. Nucleic Acid Res 22(3):470–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng X, Zhao W, Lin R, Wang M, Peng Y (2005) Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Mol Biol Rep 23(3):301–302

    Article  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275(26):19897–19905

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146(2):333–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Wang X, Tang H, Lee TH (2012) Synteny and genomic rearrangements. Plant Gen Diver 1:195–207

    Google Scholar 

  • Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y (2013) A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses. Plant Mol Biol Rep 31(1):240–247

    Article  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27(4):862–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pontier D, Miao ZH, Lam E (2001) Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J 27(6):529–538

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  • Riechmann J, Heard J, Martin G, Reuber L, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siberil Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268(22):5655–5666

    Article  CAS  PubMed  Google Scholar 

  • Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmello-Guerreiro S, Vincentz M (2007) The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172(6):1148–1156

    Article  CAS  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20(4):403–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61(6):897–915

    Article  CAS  PubMed  Google Scholar 

  • Tak H, Mhatre M (2013) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250(1):333–345

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22(9):511–519

    Article  CAS  PubMed  Google Scholar 

  • Upreti K, Murti G (2010) Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plant 54(4):730–734

    Article  CAS  Google Scholar 

  • Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011a) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53(3):212–231

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Grow Reg 48(2):137–144

    Article  CAS  Google Scholar 

  • Wang N, Xiang Y, Fang L, Wang Y, Xin H, Li S (2013) Patterns of gene duplication and their contribution to expansion of gene families in grapevine. Plant Mol Biol Rep 31:852–861

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34(3):159–164

    Google Scholar 

  • Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH (2011b) Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 6(12):e28150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao HG, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25(9):968–977

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S (2012) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18:267–276

    Article  PubMed  Google Scholar 

  • Yang D-L, Yang Y, He Z (2013) Role of plant hormones and their cross-talks in rice immunity. Mol Plant 6:675–685

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59(4):839–848

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mao L, Wang H, Brocker C, Yin X, Vasiliou V, Fei Z, Wang X (2012) Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PloS One 7(2):e32153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang J, Peng R, Cheng Z, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu X, Jin X (2009) Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic 123(1):73–81

    Article  CAS  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yi Zheng for providing help with bioinformatics analysis. This work was supported by the National Natural Science Foundation of China grant no. 31272136 and the Program for Innovative Research Team of Grape Germplasm Resources and Breeding grant no. 2013KCT-25 to X.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1819 kb)

ESM 2

(XLS 181 kb)

ESM 3

(XLS 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Zhang, H., Guo, C. et al. Evolutionary and Expression Analyses of Basic Zipper Transcription Factors in the Highly Homozygous Model Grape PN40024 (Vitis vinifera L.). Plant Mol Biol Rep 32, 1085–1102 (2014). https://doi.org/10.1007/s11105-014-0723-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0723-3

Keywords

Navigation