Skip to main content
Log in

Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A novel pathogen-induced gene encoding the RAV (Related to ABI3/VP1) transcription factor, CARAV1, was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria. CARAV1 contains two distinct DNA-binding domains AP2 and B3 uniquely found in higher plants. Transient expression analysis of the smGFP:CARAV1 fusion construct in Arabidopsis protoplasts and pepper epidermal cells revealed the CARAV1 protein to be localized in the nucleus. The N-terminal region of CARAV1 fused to the GAL4 DNA-binding domain was required to activate transcription of reporter genes in yeast. In yeast one-hybrid, the recognition of CAACA and CACCTG motifs also were essential for the CARAV1 protein to bind to a specific target gene and activate the reporter gene. The expression of the CARAV1 gene was strongly induced early in pepper leaves during the pathogen infection, abiotic elicitors and environmental stresses. CARAV1 transcripts were localized in the phloem cells of leaf tissues during pathogen infection and ethylene treatment. Ectopic expression of the CARAV1 gene in transgenic Arabidopsis plants induced some PR genes and enhanced resistance against infection by Pseudomonas syringae pv. tomato DC3000 and osmotic stresses by high salinity and dehydration. The CARAV1 promoter activation was induced by P. syringae pv. tabaci, salicylic acid and abscisic acid. These data suggest that pathogen- and abiotic stress-inducible CARAV1 functions as a transcriptional activator triggering resistance to bacterial infection and tolerance to osmotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell 9:209–221

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangle JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    Article  PubMed  CAS  Google Scholar 

  • Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant-Microbe Interact 16:196–205

    PubMed  CAS  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Jauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol 2:280–286

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones DG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed  CAS  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    Article  PubMed  CAS  Google Scholar 

  • Heinekamp T, Kuhlmann M, Lenk A, Strathmann A, Droge-Laser W (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol Gen Genomics 267:16–26

    Article  CAS  Google Scholar 

  • Hill A, Nantel A, Rock CD, Quatrano RS (1996) A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem 271:3366–3374

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2005) Functional characterization of PR-1 protein, β-1,3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum. Plant Pathol J 21:195–206

    Google Scholar 

  • Iwabuchi K, Li B, Bartel P, Fields S (1993) Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8:1693–1696

    PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol 21:121–131

    Google Scholar 

  • Jung HW, Hwang BK (2000) Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. Mol Plant-Microbe Interact 13:136–142

    PubMed  CAS  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds top bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  PubMed  CAS  Google Scholar 

  • Kang SG, Jin JB, Piao HL, Pih KT, Jang HJ, Lim JH, Hwang I (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol Biol 38:437–447

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Hwang BK (2000) Pepper gene encoding a basic pathogenesis-related protein1 is pathogen and ethylene inducible. Physiol Plant 108:51–60

    CAS  Google Scholar 

  • Kim YJ, Martin GB (2004) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Plant Pathol J 20:7–12

    Google Scholar 

  • Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol 55:883–904

    PubMed  CAS  Google Scholar 

  • Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Hwang BK (2003) Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216:387–396

    PubMed  CAS  Google Scholar 

  • Lee SC, Hong JK, Kim YJ, Hwang BK (2000a) Pepper gene encoding thionin is differentially induced by pathogens, ethylene and methyl jasmonate. Physiol Mol Plant Pathol 56:207–216

    Article  CAS  Google Scholar 

  • Lee SC, Lee YK, Kim KD, Hwang BK (2000b) In situ hybridization study of organ- and pathogen-dependent expression of a novel thionin gene in pepper (Capsicum annuum). Physiol Plant 110:384–392

    Article  CAS  Google Scholar 

  • Lee SJ, Lee MY, Yi SY, Oh SK, Choi SH, Her NH, Choi D, Min BW, Yang SG, Harn CH (2002) PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper. Mol Plant-Microbe Interact 15:540–548

    PubMed  CAS  Google Scholar 

  • Lee J-H, Kim S-H, Jung Y-H, Kim J-A, Lee M-O, Choi P-G, Choi W, Kim K-N, Jwa N-S (2005) Molecular cloning and functional analysis of rice (Oryza sativa L.) OsNDR1 on defense signaling pathway. Plant Pathol J 21:149–157

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–595

    Article  PubMed  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  • Luerssen K, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcriptional factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Park JM (2005) The hypersensitive response. A cell death during disease resistance. Plant Pathol J 21:99–101

    Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux J, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2114

    Article  PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Shah DM (1991) Developmental and pathogen- induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press

  • Schwechheimer C, Bevan M (1998) The regulation of transcription factor activity in plants. Trends Plant Sci 3:378–383

    Article  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Dotson M, Keen NT (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol Biol 18:835–839

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens KFMJ, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Triezenberg SJ (1995) Structure and function of transcriptional activation domains. Curr Opin Gen Dev 5:190–196

    Article  CAS  Google Scholar 

  • Ukness S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    Article  Google Scholar 

  • Ülker B, Somssich I (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guifoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux J, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    Article  PubMed  CAS  Google Scholar 

  • Wubben JP, Lawrence CB, de Wit PJGM (1996) Differential induction of chitinase and 1, 3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiol Mol Plant Pathol 48:105–116

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Additional information

Kee Hoon Sohn and Sung Chul Lee contributed equally to the paper

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, K.H., Lee, S.C., Jung, H.W. et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61, 897–915 (2006). https://doi.org/10.1007/s11103-006-0057-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-0057-0

Keywords

Navigation